SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Algebra, STD2 EQ-Bank 01

Jerico is the manager of a weekend market in which there are 220 stalls for rent. From past experience, Jerico knows that if he charges \(d\) dollars to rent a stall. then the number of stalls, \(s\), that will be rented is given by:

\(s=220-4d\)

  1. How many stalls will be rented if Jerico charges $7.50 per stall .  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Complete the following table for the function  \(s=220-4d\).   (1 mark)

    --- 0 WORK AREA LINES (style=lined) ---

\begin{array} {|c|c|c|}
\hline
\rule{0pt}{2.5ex} \quad d\quad \rule[-1ex]{0pt}{0pt} & \rule{0pt}{2.5ex} \quad 10\quad\rule[-1ex]{0pt}{0pt} & \rule{0pt}{2.5ex} \quad 30\quad & \rule{0pt}{2.5ex} \quad 50\quad \\
\hline
\rule{0pt}{2.5ex} \quad s\quad \rule[-1ex]{0pt}{0pt} & \ & \ & \\
\hline
\end{array}

  1. Using an appropriate vertical scale and labelled axes, graph the function  \(s=220-4d\) on the grid below.  (2 marks)

    --- 0 WORK AREA LINES (style=lined) ---

  1. Does it make sense to use the formula \(s=220-4d\)  to calculate the number of stalls rented if Jerico charges $60 per stall? Explain your answer.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  

a.    \(190\ \text{stalls will be rented}\)

b.

\begin{array} {|c|c|c|}
\hline
\rule{0pt}{2.5ex} \quad d\quad \rule[-1ex]{0pt}{0pt} & \rule{0pt}{2.5ex} \quad 10\quad\rule[-1ex]{0pt}{0pt} & \rule{0pt}{2.5ex} \quad 30\quad & \rule{0pt}{2.5ex} \quad 50\quad \\
\hline
\rule{0pt}{2.5ex} \quad s\quad \rule[-1ex]{0pt}{0pt} & 180 \ & 100 \ & 20  \\
\hline
\end{array}

c.

d.    \(\text{When}\ d=60, s=220-4\times 60=-20\)

\(\therefore\ \text{It does not make sense to charge }$60\ \text{ per stall}\)

\(\text{as you cannot have a negative number of stalls.}\)

 

Show Worked Solution
a.     \(s\) \(=220-4d\)
    \(=220-4\times 7.50\)
    \(=190\)

  
\(190\ \text{stalls will be rented}\)

b.

\begin{array} {|c|c|c|}
\hline
\rule{0pt}{2.5ex} \quad d\quad \rule[-1ex]{0pt}{0pt} & \rule{0pt}{2.5ex} \quad 10\quad\rule[-1ex]{0pt}{0pt} & \rule{0pt}{2.5ex} \quad 30\quad & \rule{0pt}{2.5ex} \quad 50\quad \\
\hline
\rule{0pt}{2.5ex} \quad s\quad \rule[-1ex]{0pt}{0pt} & 180 \ & 100 \ & 20  \\
\hline
\end{array}

c.

d.    \(\text{When}\ d=60, s=220-4\times 60=-20\)

\(\therefore\ \text{It does not make sense to charge }$60\ \text{ per stall}\)

\(\text{as you cannot have a negative number of stalls.}\)

Filed Under: Applications: Currency, Fuel and Other Problems (Std2-2027) Tagged With: Band 2, Band 3, Band 4, smc-6256-30-Other Linear Applications, syllabus-2027

Copyright © 2014–2025 SmarterEd.com.au · Log in