SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, 2ADV EQ-Bank 4

Consider the function  \(y=f(x)\)  where

\(f(x)= \begin{cases}x^2+6, & \text { for } x \leqslant 0 \\ 6, & \text { for } 0<x \leqslant 3 \\ 2^x, & \text { for } x>3\end{cases}\)

  1. Sketch  \(y=f(x)\)   (3 marks)

    --- 12 WORK AREA LINES (style=lined) ---

  2. For what value of \(x\) is  \(y=f(x)\)  NOT continuous?   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.
   

b.    \(f(x)\ \ \text {is NOT continuous at}\ \  x=3.\)

Show Worked Solution

a.
   

b.    \(f(x)\ \ \text {is NOT continuous at}\ \  x=3.\)

Filed Under: Piecewise Functions (Adv-2027) Tagged With: Band 3, Band 4, smc-6217-10-Sketch graph, smc-6217-40-Continuity, syllabus-2027

Copyright © 2014–2025 SmarterEd.com.au · Log in