SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

HMS, BM EQ-Bank 57

Analyse how the structure of the respiratory and circulatory systems work together to support performance in a rock climber during a difficult ascent.  (8 marks)

--- 22 WORK AREA LINES (style=lined) ---

Show Answers Only

Sample Answer

Overview Statement

  • Rock climbing demands unique respiratory and circulatory adaptations due to body positioning and sustained muscle contractions.
  • Key components include respiratory muscles, capillary networks, heart structure, and blood flow regulation.
  • Performance depends on how these systems adapt to climbing-specific challenges.

Respiratory Adaptations During Compression

  • The diaphragm and intercostal muscles must function despite chest compression against rock faces.
  • Enhanced respiratory muscle strength enables breathing in restricted positions.
  • Chest wall flexibility allows sufficient lung expansion even when compressed.
  • Such adaptations ensure adequate oxygen intake throughout challenging postures.

Capillary Networks and Grip Endurance

  • Extensive capillarisation in forearm muscles meets extreme grip demands during climbing.
  • Dense capillary networks deliver oxygen during sustained isometric contractions.
  • Blood flow increases dramatically in active forearm muscles during difficult holds.
  • Vascular density directly influences grip endurance and climbing duration.

Heart Structure and Positional Changes

  • The four-chamber heart structure coordinates with rapid positional changes during climbing.
  • One-way valves prevent blood pooling when transitioning to inverted positions.
  • Rapid cardiovascular adjustments maintain circulation from vertical to overhang positions.
  • Structural features ensure continuous oxygen delivery regardless of body orientation.

Integrated System Response

  • Pulmonary circulation adapts to varied thoracic pressures during climbing movements.
  • Systemic circulation prioritises blood flow through intermittent vessel dilation and constriction.
  • Recovery between moves allows repayment of oxygen debt from sustained holds.
  • Combined adaptations determine overall climbing performance and ascent sustainability.
Show Worked Solution

Sample Answer

Overview Statement

  • Rock climbing demands unique respiratory and circulatory adaptations due to body positioning and sustained muscle contractions.
  • Key components include respiratory muscles, capillary networks, heart structure, and blood flow regulation.
  • Performance depends on how these systems adapt to climbing-specific challenges.

Respiratory Adaptations During Compression

  • The diaphragm and intercostal muscles must function despite chest compression against rock faces.
  • Enhanced respiratory muscle strength enables breathing in restricted positions.
  • Chest wall flexibility allows sufficient lung expansion even when compressed.
  • Such adaptations ensure adequate oxygen intake throughout challenging postures.

Capillary Networks and Grip Endurance

  • Extensive capillarisation in forearm muscles meets extreme grip demands during climbing.
  • Dense capillary networks deliver oxygen during sustained isometric contractions.
  • Blood flow increases dramatically in active forearm muscles during difficult holds.
  • Vascular density directly influences grip endurance and climbing duration.

Heart Structure and Positional Changes

  • The four-chamber heart structure coordinates with rapid positional changes during climbing.
  • One-way valves prevent blood pooling when transitioning to inverted positions.
  • Rapid cardiovascular adjustments maintain circulation from vertical to overhang positions.
  • Structural features ensure continuous oxygen delivery regardless of body orientation.

Integrated System Response

  • Pulmonary circulation adapts to varied thoracic pressures during climbing movements.
  • Systemic circulation prioritises blood flow through intermittent vessel dilation and constriction.
  • Recovery between moves allows repayment of oxygen debt from sustained holds.
  • Combined adaptations determine overall climbing performance and ascent sustainability.

Filed Under: Respiratory and circulatory systems Tagged With: Band 5, Band 6, smc-5523-10-Structure-function

Copyright © 2014–2025 SmarterEd.com.au · Log in