SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Advanced Trigonometry, SMB-007

A point \(X\) is located on the unit circle at angle 300\(^{\circ}\) from the positive \(x\)-axis.

  1. Determine the quadrant in which \(X\) lies.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Find the coordinates of point \(X\).   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

a.   \(\text{Quadrant IV}\)

b.   \(X\left( \dfrac{1}{2}, -\dfrac{\sqrt{3}}{2}\right) \)

Show Worked Solution

a.   
         

\(300^{\circ}\ \text{lies in Quadrant IV}\ \ (270^{\circ} \lt 300^{\circ} \lt 360^{\circ}) \)
 

b.   \(\text{Reference angle}\ (\theta):\  360^{\circ}-\theta=300^{\circ}\ \ \Rightarrow \ \ \theta=60^{\circ}\)

\(x\text{-coordinate of}\ X = \cos\,60^{\circ} = \dfrac{1}{2}\)

\(y\text{-coordinate of}\ X = -\sin\,60^{\circ} = -\dfrac{\sqrt{3}}{2}\)

\(X\left( \dfrac{1}{2}, -\dfrac{\sqrt{3}}{2}\right) \)

Filed Under: Unit Circle Tagged With: num-title-ct-pathd, smc-5601-10-Find quadrant, smc-5601-20-Find coordinates

Copyright © 2014–2025 SmarterEd.com.au · Log in