SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Area SM-Bank 049

A rectangle has an area of 24 square centimetres.

  1. One possible pair of integer dimensions for this rectangle is \(2\ \text{cm}\times 12\ \text{cm}\).
    Write down all possible pairs of integer dimensions for a rectangle with an area of 24 square centimetres.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Using the given dimensions and your answers from (a), calculate the largest possible perimeter for a rectangle with an area of 24 square centimetres.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---


Show Answers Only

a.    \(1\ \text{cm}\times 24\ \text{cm}, 2\ \text{cm}\times 12\ \text{cm}, 3\ \text{cm}\times 8\ \text{cm}, 4\ \text{cm}\times 6\ \text{cm}\)

b.    \(50\ \text{cm}\)

Show Worked Solution

a.    \(\text{All possible integer dimensions:}\)

\(1\ \text{cm}\times 24\ \text{cm},\ \ 2\ \text{cm}\times 12\ \text{cm},\ \ 3\ \text{cm}\times 8\ \text{cm},\ \ 4\ \text{cm}\times 6\ \text{cm}\)

b.    \(\text{Perimeters}\)

\(\text{P}_{1}=2\times 1+2\times 24=50\ \text{cm}\)

\(\text{P}_{2}=2\times 2+2\times 12=28\ \text{cm}\)

\(\text{P}_{3}=2\times 3+2\times 8=22\ \text{cm}\)

\(\text{P}_{4}=2\times 4+2\times 6=20\ \text{cm}\)

\(\therefore\ \text{Largest possible perimeter}= 50\ \text{cm}\)

Filed Under: Quadrilaterals Tagged With: num-title-ct-core, smc-4943-10-Squares and rectangles

Copyright © 2014–2025 SmarterEd.com.au · Log in