Use the algebraic expression \(4-x\) to complete the table. (3 marks)
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(4-x\) |
--- 0 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Use the algebraic expression \(4-x\) to complete the table. (3 marks)
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(4-x\) |
--- 0 WORK AREA LINES (style=lined) ---
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(4-x\) | \(3\) | \(2\) | \(1\) | \(0\) | \(-1\) | \(-6\) |
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(4-x\) | \(3\) | \(2\) | \(1\) | \(0\) | \(-1\) | \(-6\) |
Use the algebraic expression \(-x\) to complete the table. (3 marks)
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(-x\) |
--- 0 WORK AREA LINES (style=lined) ---
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(-x\) | \(-1\) | \(-2\) | \(-3\) | \(-4\) | \(-5\) | \(-10\) |
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(-x\) | \(-1\) | \(-2\) | \(-3\) | \(-4\) | \(-5\) | \(-10\) |
Use the algebraic expression \(5x\) to complete the table. (3 marks)
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(5x\) |
--- 0 WORK AREA LINES (style=lined) ---
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(5x\) | \(5\) | \(10\) | \(15\) | \(20\) | \(25\) | \(50\) |
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(5x\) | \(5\) | \(10\) | \(15\) | \(20\) | \(25\) | \(50\) |
Use the algebraic expression \(x^2-3x\) to complete the table. (3 marks)
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(x^2-3x\) |
--- 0 WORK AREA LINES (style=lined) ---
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(x^2-3x\) | \(-2\) | \(-2\) | \(0\) | \(4\) | \(10\) | \(70\) |
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(x^2-3x\) | \(-2\) | \(-2\) | \(0\) | \(4\) | \(10\) | \(70\) |
Use the algebraic expression \(x^2+1\) to complete the table. (3 marks)
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(x^2+1\) |
--- 0 WORK AREA LINES (style=lined) ---
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(x^2+1\) | \(2\) | \(5\) | \(10\) | \(17\) | \(26\) | \(101\) |
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(x^2+1\) | \(2\) | \(5\) | \(10\) | \(17\) | \(26\) | \(101\) |
Use the algebraic expression \(2x+1\) to complete the table. (3 marks)
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(2x+1\) |
--- 0 WORK AREA LINES (style=lined) ---
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(2x+1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(21\) |
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(2x+1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(21\) |
Use the algebraic expression \(x-5\) to complete the table. (3 marks)
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(x-5\) |
--- 0 WORK AREA LINES (style=lined) ---
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(x-5\) | \(-4\) | \(-3\) | \(-2\) | \(-1\) | \(0\) | \(5\) |
\(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(10\) |
\(x-5\) | \(-4\) | \(-3\) | \(-2\) | \(-1\) | \(0\) | \(5\) |
Use the algebraic expression \(x+3\) to complete the table. (3 marks)
\(x\) | 1 | 2 | 3 | 4 | 5 | 10 |
\(x+3\) |
--- 0 WORK AREA LINES (style=lined) ---
\(x\) | 1 | 2 | 3 | 4 | 5 | 10 |
\(x+3\) | 4 | 5 | 6 | 7 | 8 | 13 |
\(x\) | 1 | 2 | 3 | 4 | 5 | 10 |
\(x+3\) | 4 | 5 | 6 | 7 | 8 | 13 |
Evaluate the expression \(x^2+3x-4\) when:
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
a. \(0\)
b. \(14\)
a. | \(x^2+3x-4\) | \(=1^2+3\times 1-4 \) |
\(=1\times 1 +3-4\) | ||
\(=0\) |
b. | \(x^2+3x-4\) | \(=3^2+3\times 3-4\) |
\(=3\times 3 +3\times 3-4\) | ||
\(=14\) |
Evaluate the expression \(-2x^2\) when:
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
a. \(-2\)
b. \(-8\)
c. \(-\dfrac{1}{2}\)
a. | \(-2x^2\) | \(=-2\times 1^2\) |
\(=-2\times 1\times 1\) | ||
\(=-2\) |
b. | \(-2x^2\) | \(=-2\times (-2)^2\) |
\(=-2\times (-2)\times (-2)\) | ||
\(=-8\) |
c. | \(-2x^2\) | \(=-2\times \bigg(-\dfrac{1}{2}\bigg)^2\) |
\(=-2\times \bigg(-\dfrac{1}{2}\bigg) \times \bigg(-\dfrac{1}{2}\bigg)\) | ||
\(=-2\times\dfrac{1}{4}\) | ||
\(=-\dfrac{1}{2}\) |
Evaluate the expression \(w^2\) when:
--- 1 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
a. \(16\)
b. \(1\)
c. \(\dfrac{1}{9}\)
a. | \(w^2\) | \(=4^2\) |
\(=4\times 4\) | ||
\(=16\) |
b. | \(w^2\) | \(=(-1)^2\) |
\(=(-1)\times (-1)\) | ||
\(=1\) |
c. | \(w^2\) | \(=\bigg(\dfrac{1}{3}\bigg)^2\) |
\(=\dfrac{1}{3}\times \dfrac{1}{3}\) | ||
\(=\dfrac{1}{9}\) |
Evaluate the expression \(\dfrac{c}{2}-\dfrac{b}{3}+a\) when \(a=-4\), \(b=-3\) and \(c=10\). (2 marks)
\(2\)
\(\dfrac{c}{2}-\dfrac{b}{3}+a\) | \(=\dfrac{10}{2}-\bigg(\dfrac{-3}{3}\bigg)+(-4)\) |
\(=5-(-1)-4\) | |
\(=2\) |
Evaluate the expression \(\dfrac{20}{c}+\dfrac{15}{d}\) when \(c=-2\) and \(d=3\). (2 marks)
\(-5\)
\(\dfrac{20}{c}+\dfrac{15}{d}\) | \(=\dfrac{20}{-2}+\dfrac{15}{3}\) |
\(=-10+5\) | |
\(=-5\) |
Evaluate the expression \(11+a-3b\) when \(a=13\) and \(b=8\). (2 marks)
\(0\)
\(11+a-3b\) | \(=11+13-3\times 8\) |
\(=11+13-24\) | |
\(=0\) |
Evaluate the expression \(-2x+7y\) when \(x=1\) and \(y=-2\). (2 marks)
\(-16\)
\(-2x+7y\) | \(=-2\times 1+7\times -2\) |
\(=-2-14\) | |
\(=-16\) |
Evaluate the expression \(4m-5n\) when \(m=2\) and \(n=4\). (2 marks)
\(-12\)
\(4m-5n\) | \(=4\times 2-5\times 4\) |
\(=8-20\) | |
\(=-12\) |
Evaluate the expression \(3z+11\) when \(z=3\). (1 mark)
\(20\)
\(3z+11\) | \(=3\times 3+11\) |
\(=9+11\) | |
\(=20\) |
Evaluate the expression \(-2-5m\) when \(m=-1\). (1 mark)
\(3\)
\(-2-5m\) | \(=-2-5\times (-1)\) |
\(=-2+5\) | |
\(=3\) |
Evaluate the expression \(10-2y\) when \(y=4\). (1 mark)
\(2\)
\(10-2y\) | \(=10-2\times 4\) |
\(=10-8\) | |
\(=2\) |
When \(\large x\)\(=5\) and \(\large y\)\(=-2\) the value of the expression \(2x+3y\) is:
\(A\)
\(2x+3y\) | \(=2\times 5+3\times -2\) |
\(=10+-6\) | |
\(=4\) |
\(\Rightarrow A\)
When \(\large a\)\(=2\) and \(\large b\)\(=-1\) the value of the expression \(a+b\) is:
\(D\)
\(a+b\) | \(=2+-1\) |
\(=1\) |
\(\Rightarrow D\)
When \(x=4\) the value of the expression \(3\times x\) is:
\(C\)
\(3\times x\) | \(=3\times 4\) |
\(=12\) |
\(\Rightarrow C\)