SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Indices, SM-Bank 103

Simplify  \(3m^0+(4m)^0-(7m^4)^0\), giving your answer in simplified index form.  (2 marks)

Show Answers Only

\(3\)

Show Worked Solution
\(3m^0+(4m)^0-(7m^4)^0\) \(=3\times 1+1-1\)
  \(=3\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 102

Simplify  \(\dfrac{3^6\times 3^2}{3^3}\), giving your answer in simplified index form.  (2 marks)

Show Answers Only

\(3^5\)

Show Worked Solution
\(\dfrac{3^6\times 3^2}{3^3}\) \(=\dfrac{3^8}{3^3}\)
  \(=3^5\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 101

Simplify  \(2^3\times 5^4\times 2^5\ ÷\  5^2\), giving your answer in simplified index form.  (2 marks)

Show Answers Only

\(2^8\times 5^2\)

Show Worked Solution
\(2^3\times 5^4\times 2^5\ ÷\  5^2\) \(=2^{3+5}\times 5^{4-2}\)
  \(=2^8\times 5^2\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 100

Simplify \(4(2^2)^2\), giving your answer in simplified index form.  (2 marks)

Show Answers Only

\(64\)

Show Worked Solution
\(4(2^2)^2\) \(=4\times 2^4\)
  \(=4\times 16\)
  \(=64\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 099

Simplify the following, giving your answers in index form.

  1. \((2+3)^0\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. \(2(4^0)-2\)  (2 marks)

    --- 1 WORK AREA LINES (style=lined) ---

  3. \(3\times 6^0+4\times 2^0\)  (2 marks)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(1\)

b.    \(0\)

b.    \(7\)

Show Worked Solution

a.   \((2+3)^0=5^0=1\)

b.   \(2(4^0)-2=2\times 1-2=0\)

c.   \(3\times 6^0+4\times 2^0=3\times 1+4\times 1=7\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 098

Simplify the following, giving your answers in index form.

  1. \(4^0\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. \(6^0+2^0\)  (2 marks)

    --- 1 WORK AREA LINES (style=lined) ---

  3. \(4+2^0\)  (2 marks)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(1\)

b.    \(2\)

b.    \(5\)

Show Worked Solution

a.   \(4^0=1\)

b.   \(6^0+2^0=1+1=2\)

c.   \(4+2^0=4+1=5\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 097

Simplify the following, giving your answers in index form.

  1. \(4^2\ ÷\ 4^2\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. \(6^3\ ÷\ 6^3\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. \(12^7\ ÷\ 12^7\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(4^0\)

b.    \(6^0\)

b.    \(12^0\)

Show Worked Solution

a.   \(4^2\ ÷\ 4^2=4^{2-2}=4^0\)

b.   \(6^3\ ÷\ 6^3=6^{3-3}=6^0\)

c.   \(12^7\ ÷\ 12^7=12^{7-7}=12^0\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 096

Simplify the following, giving your answers in index form.

  1. \((5^2)^2\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. \((6^3)^4\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. \((7^4)^5\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(5^4\)

b.    \(6^{12}\)

b.    \(7^{20}\)

Show Worked Solution

a.   \((5^2)^2=5^{2\times 2}=5^4\)

b.   \((6^3)^4=6^{3\times 4}=6^{12}\)

c.   \((7^4)^5=7^{4\times 5}=7^{20}\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 095

Simplify the following, giving your answers in index form.

  1. \((2^4)^4\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. \((4^3)^5\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. \((3^3)^3\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(2^{16}\)

b.    \(4^{15}\)

b.    \(3^9\)

Show Worked Solution

a.   \((2^4)^4=2^{4\times 4}=2^{16}\)

b.   \((4^3)^5=4^{3\times 5}=4^{15}\)

c.   \((3^3)^3=3^{3\times 3}=3^9\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 094

  1. Write  \((5^2)^4\)  in expanded form.  (2 marks)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Write your answer to (a) in simplified index form.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \((5\times 5)\times (5\times 5)\times (5\times 5)\times (5\times 5)\)

b.    \(5^8\)

Show Worked Solution

a.   \((5^2)^4=(5\times 5)\times (5\times 5)\times (5\times 5)\times (5\times 5)\)
 

b.   \((5\times 5)\times (5\times 5)\times (5\times 5)\times (5\times 5)=5^8\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 093

  1. Write  \((2^3)^3\)  in expanded form.  (2 marks)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Write your answer to (a) in simplified index form.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \((2\times 2\times 2)\times (2\times 2\times 2)\times (2\times 2\times 2)\)

b.    \(2^9\)

Show Worked Solution

a.   \((2^3)^3=(2\times 2\times 2)\times (2\times 2\times 2)\times (2\times 2\times 2)\)
 

b.   \((2\times 2\times 2)\times (2\times 2\times 2)\times (2\times 2\times 2)=2^9\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 092

Find the missing term in the following number sentence.  (1 mark)

--- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

\(2^7\)

Show Worked Solution

\(a^m\ ÷\ a^n=a^{m-n}\)

\(2^n\ ÷\ 2^2\) \(=2^5\)
\(\therefore \ n-2\) \(=5\)
\(n\) \(=7\)

 
\(\therefore \ \text{the missing term is }2^7\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 091

Find the missing term in the following number sentence.  (1 mark)

--- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

\(3^{11}\)

Show Worked Solution

\(a^m\ ÷\ a^n=a^{m-n}\)

\(3^n\ ÷\ 3^4\) \(=3^7\)
\(\therefore \ n-4\) \(=7\)
\(n\) \(=11\)

 
\(\therefore \ \text{the missing term is }3^{11}\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 090

Simplify the following, giving your answers in index form.

  1. \(\dfrac{2^{16}}{2^9}\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. \(\dfrac{4^8}{4^3}\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. \(\dfrac{10^{11}}{10^2}\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(2^7\)

b.    \(4^5\)

b.    \(10^9\)

Show Worked Solution

a.   \(\dfrac{2^{16}}{2^9}=2^{16-9}=2^7\)

b.   \(\dfrac{4^8}{4^3}=4^{8-3}=4^5\)

c.   \(\dfrac{10^{11}}{10^2}=10^{11-2}=10^9\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 089

Simplify the following, giving your answers in index form.

  1. \(2^8 \ ÷\ 2^4\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. \(5^{15} \ ÷\ 5^9\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. \(3^4 \ ÷\ 3\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(2^4\)

b.    \(5^6\)

b.    \(3^3\)

Show Worked Solution

a.   \(2^8\ ÷\ 2^4=2^{8-4}=2^4\)

b.   \(5^{15}\ ÷\ 5^9=5^{15-9}=5^6\)

c.   \(3^4\ ÷\ 3^1=3^{4-1}=3^3\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 088

  1. Write  \(\dfrac{7^5}{7^2}\)  as a fraction in expanded form.  (2 marks)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Write your answer to (a) in simplified index form.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(\dfrac{7\times 7\times 7\times 7\times 7}{7\times 7}\)

b.    \(7^3\)

Show Worked Solution

a.   \(\dfrac{7^5}{7^2}=\dfrac{7\times 7\times 7\times 7\times 7}{7\times 7}\)
 

b.   \(\dfrac{7\times 7\times 7\times 7\times 7}{7\times 7}=7^3\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 087

  1. Write  \(\dfrac{3^6}{3^4}\)  as a fraction in expanded form.  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Write your answer to (a) in simplified index form.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(\dfrac{3\times 3\times 3\times 3\times 3\times 3}{3\times 3\times 3\times 3}\)

b.    \(3^2\)

Show Worked Solution

a.   \(\dfrac{3^6}{3^4}=\dfrac{3\times 3\times 3\times 3\times 3\times 3}{3\times 3\times 3\times 3}\)
 

b.   \(\dfrac{3\times 3\times 3\times 3\times 3\times 3}{3\times 3\times 3\times 3}=3^2\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 086

Find the missing term in the following number sentence.  (1 mark)

--- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

\(3^7\)

Show Worked Solution

\(a^m\times a^n=a^{m+n}\)

\(3^n\times 3^4\) \(=3^{11}\)
\(\therefore \ n+4\) \(=11\)
\(n\) \(=7\)

 
\(\therefore \ \text{the missing term is }3^7\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 085

Find the missing term in the following number sentence.  (1 mark)

--- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

\(2^6\)

Show Worked Solution

\(a^m\times a^n=a^{m+n}\)

\(2^8\times 2^n\) \(=2^{14}\)
\(\therefore \ 8+n\) \(=14\)
\(n\) \(=6\)

 
\(\therefore \ \text{the missing term is }2^6\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 084

Find the missing term in the following number sentence.  (1 mark)

--- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

\(4^5\)

Show Worked Solution

\(a^m\times a^n=a^{m+n}\)

\(4^3\times 4^n\) \(=4^8\)
\(\therefore \ 3+n\) \(=8\)
\(n\) \(=5\)

 
\(\therefore \ \text{the missing term is }4^5\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 083

Simplify the following, giving your answers in index form.

  1. \(2^5\times 2^4\times 2\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. \(4^3\times 4^2\times 4^6\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. \(3^2\times 3\times 3^3\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(2^{10}\)

b.    \(4^{11}\)

b.    \(3^6\)

Show Worked Solution

a.   \(2^5\times 2^4\times 2=2^{5+4+1}=2^{10}\)

b.   \(4^3\times 4^2\times 4^6=4^{3+2+6}=4^{11}\)

c.   \(3^2\times 3^1\times 3^3=3^{2+1+3}=3^6\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 082

Simplify the following, giving your answers in index form.

  1. \(5^3\times 5^2\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. \(7^7\times 7\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. \(6^4\times 6^3\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(5^5\)

b.    \(7^8\)

b.    \(6^7\)

Show Worked Solution

a.   \(5^3\times 5^2=5^{3+2}=5^5\)

b.   \(7^7\times 7^1=7^{7+1}=7^8\)

c.   \(6^4\times 6^3=6^{4+3}=6^7\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 081

  1. Write \(2^3\times 2^2\) in expanded form.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. Write your answer to (a) in index form.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \((2\times 2\times 2)\times (2\times 2)\)

b.    \(2^5\)

Show Worked Solution

a.   \(2^3\times 2^2=(2\times 2\times 2)\times (2\times 2)\)

b.   \(2^3\times 2^2=2^5\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Banks 080

  1. Write \(3^2\times 3^4\) in expanded form.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Write your answer to (a) in index form.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \((3\times 3)\times (3\times 3\times 3\times 3)\)

b.    \(3^6\)

Show Worked Solution

a.   \(3^2\times 3^4=(3\times 3)\times (3\times 3\times 3\times 3)\)

b.   \(3^2\times 3^4=3^6\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-22-Index Laws

Indices, SM-Bank 079

Evaluate  \(3\times\sqrt{81}+\sqrt[3]{27}\times 2\).  (2 marks)

Show Answers Only

\(33\)

Show Worked Solution
\(3\times \sqrt{81}+\sqrt[3]{27}\times 2\) \(=3\times\sqrt{9\times 9}+\sqrt[3]{3\times 3\times 3}\times 2\)
  \(=3\times 9+3\times 2\)
  \(=33\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 078

Evaluate \(3\times\sqrt[3]{64}-\sqrt{100}\).  (2 marks)

Show Answers Only

\(2\)

Show Worked Solution
\(3\times \sqrt[3]{64}-\sqrt{100}\) \(=3\times\sqrt[3]{4\times 4\times 4}-\sqrt{10\times 10}\)
  \(=3\times 4-10\)
  \(=2\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 077

Evaluate \(\sqrt[3]{27}-\sqrt{25}\).  (2 marks)

Show Answers Only

\(-2\)

Show Worked Solution
\(\sqrt[3]{27}-\sqrt{25}\) \(=\sqrt[3]{3\times 3\times 3}-\sqrt{5\times 5}\)
  \(=3-5\)
  \(=-2\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 076

Evaluate \(\sqrt{9}+\sqrt[3]{8}\).  (2 marks)

Show Answers Only

\(5\)

Show Worked Solution
\(\sqrt{9}+\sqrt[3]{8}\) \(=\sqrt{3\times 3}+\sqrt[3]{2\times 2\times 2}\)
  \(=3+2\)
  \(=5\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 075

Find the missing whole number that makes the following number sentence correct.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

Show Worked Solution

\(\text{Using trial and error method:}\)

\(\text{Test 1st square number}\ \rightarrow 1\)

\(\text{LHS:}\) \(\ 3\times 1^2+(\sqrt{25}-1)=3\times 1+(5-1)\)
  \(=7\)
\(\text{RHS:}\) \(\ \sqrt{1}\times 9\times 3-5=1\times 27-5\)
  \(=23\)

\(\text{LHS }\ne\text{ RHS}\)
 

\(\text{Test 2nd square number}\ \rightarrow 4\)

\(\text{LHS:}\) \(\ 3\times 4^2+(\sqrt{25}-4)=3\times 16+(5-4)\)
  \(=49\)
\(\text{RHS:}\) \(\ \sqrt{4}\times 9\times 3-5=2\times 27-5\)
  \(=49\)

\(\text{LHS }=\text{ RHS}\)

\(\therefore \ \)

 

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 074 MC

Between which two number does \(\sqrt{70}\)  lie?

  1. \(5\ \text{and }6\)
  2. \(6\ \text{and }7\)
  3. \(7\ \text{and }8\)
  4. \(8\ \text{and }9\)
Show Answers Only

\(D\)

Show Worked Solution
\(\text{Consider Option D:}\) \(\rightarrow\ \sqrt{64}=8\)
  \(\rightarrow\ \sqrt{81}=9\)

 

\(\therefore\ \sqrt{70}\ \text{lies between }\sqrt{64} \text{ and }\sqrt{81}\)

\(\therefore\ \sqrt{70}\ \text{lies between }8 \text{ and }9\)

\(\Rightarrow D\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 073 MC

Between which two number does \(\sqrt{30}\) lie?

  1. \(3\ \text{and }4\)
  2. \(4\ \text{and }5\)
  3. \(5\ \text{and }6\)
  4. \(6\ \text{and }7\)
Show Answers Only

\(C\)

Show Worked Solution
\(\text{Consider Option C:}\) \(\rightarrow\ \sqrt{25}=5\)
  \(\rightarrow\ \sqrt{36}=6\)

 

\(\therefore\ \sqrt{30}\ \text{lies between }\sqrt{25} \text{ and }\sqrt{36}\)

\(\therefore\ \sqrt{30}\ \text{lies between }5 \text{ and }6\)

 
\(\Rightarrow C\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 072

Show that  \(\sqrt{9\times 4}=\sqrt{9}\times \sqrt{4}\).  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{See worked solution}\)

Show Worked Solution
\(\text{LHS}:\sqrt{9\times 4}\) \(=\sqrt{ 3\times 3\times 2\times 2}\)
  \(=\sqrt{ 6\times 6}\)
  \(=6\)

 

\(\text{RHS}:\sqrt{9}\times \sqrt{4}\) \(=3\times 2\)
  \(=6\)

\(\therefore\ \text{LHS}\ =\ \text{RHS}\)

\(\therefore\ \sqrt{9\times 4}=\sqrt{9}\times \sqrt{4}\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 071

Show that  \(\sqrt{25\times 16}=\sqrt{25}\times \sqrt{16}\).  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{See worked solution}\)

Show Worked Solution
\(\text{LHS}:\sqrt{25\times 16}\) \(=\sqrt{ 5\times 5\times 4\times 4}\)
  \(=\sqrt{ 20\times 20}\)
  \(=20\)

 

\(\text{RHS}:\sqrt{25}\times \sqrt{16}\) \(=5\times 4\)
  \(=20\)

\(\therefore\ \text{LHS}\ =\ \text{RHS}\)

\(\therefore\ \sqrt{25\times 16}=\sqrt{25}\times \sqrt{16}\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 070

Show that  \(\sqrt{225}=\sqrt{25}\times \sqrt{9}\).  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{See worked solution}\)

Show Worked Solution
\(\text{LHS}:\sqrt{225}\) \(=\sqrt{ 5\times 45}\)
  \(=\sqrt{ 5\times 5\times 9}\)
  \(=\sqrt{ 5\times 5\times 3\times 3}\)
  \(=\sqrt{ 15\times 15}\)
  \(=15\)

 

\(\text{RHS}:\sqrt{25}\times \sqrt{9}\) \(=5\times 3\)
  \(=15\)

\(\therefore\ \text{LHS}\ =\ \text{RHS}\)

\(\therefore\ \sqrt{225}=\sqrt{25}\times \sqrt{9}\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 069

Show that  \(\sqrt{144}=\sqrt{36}\times \sqrt{4}\).  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{See worked solution}\)

Show Worked Solution
\(\text{LHS}:\sqrt{144}\) \(=\sqrt{ 12\times 12}\)
  \(=12\)

 

\(\text{RHS}:\sqrt{36}\times \sqrt{4}\) \(=6\times 2\)
  \(=12\)

\(\therefore\ \text{LHS}\ =\ \text{RHS}\)

\(\therefore\ \sqrt{144}=\sqrt{36}\times \sqrt{4}\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 068 MC

Given that  \(12^2=144\), then \(\sqrt{144}=\) ?

  1. \(288\)
  2. \(72\)
  3. \(12\)
  4. \(6\)
Show Answers Only

\(C\)

Show Worked Solution

\(144=12\times 12\ \ \text{(Given)}\)

\(\therefore \sqrt{144}\) \(=\sqrt{ 12\times 12}\)
  \(=12\)

 
\(\Rightarrow C\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 067 MC

Given that  \(17^2=289\), then \(\sqrt{289}=\) ?

  1. \(8.5\)
  2. \(13.5\)
  3. \(17\)
  4. \(578\)
Show Answers Only

\(C\)

Show Worked Solution

\(289=17\times 17\ \ \text{(Given)}\)

\(\therefore \sqrt{289}\) \(=\sqrt{ 17\times 17}\)
  \(=17\)

 
\(\Rightarrow C\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 066 MC

Given that  \(21^2=441\), then \(\sqrt{441}=\) ?

  1. \(21\)
  2. \(42\)
  3. \(420\)
  4. \(194\ 481\)
Show Answers Only

\(A\)

Show Worked Solution

\(441=21\times 21\ \ \text{(Given)}\)

\(\therefore \sqrt{441}\) \(=\sqrt{ 21\times 21}\)
  \(=21\)

 
\(\Rightarrow A\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 065 MC

Given that  \(4^3=64\), then \(\sqrt[3]{64}=\) ?

  1. \(2\)
  2. \(4\)
  3. \(8\)
  4. \(21.3\)
Show Answers Only

\(B\)

Show Worked Solution

\(64=4\times 4\times 4\ \ \text{(Given)}\)

\(\therefore \sqrt[3]{64}\) \(=\sqrt[3]{ 4\times 4\times 4}\)
  \(=4\)

 
\(\Rightarrow B\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 064 MC

Given that  \(8^3=512\), then \(\sqrt[3]{512}=\) ?

  1. \(8\)
  2. \(23\)
  3. \(128\)
  4. \(171\)
Show Answers Only

\(A\)

Show Worked Solution

\(512=8\times 8\times 8\ \ \text{(Given)}\)

\(\therefore \sqrt[3]{512}\) \(=\sqrt[3]{ 8\times 8\times 8}\)
  \(=8\)

 
\(\Rightarrow A\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 063 MC

Given that  \(5^3=125\), then \(\sqrt[3]{125}=\) ?

  1. \(62.5\)
  2. \(41.7\)
  3. \(11.2\)
  4. \(5\)
Show Answers Only

\(D\)

Show Worked Solution

\(125=5\times 5\times 5\ \ \text{(Given)}\)

\(\therefore \sqrt[3]{125}\) \(=\sqrt[3]{ 5\times 5\times 5}\)
  \(=5\)

 
\(\Rightarrow D\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 062

  1. Write 900 as a product of its prime factors.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Hence find \(\sqrt{900}\).  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(2\times 2\times 3\times 3\times 5\times 5\)

b.    \(30\)

Show Worked Solution
a.    \(900\) \(=9\times 100\)
    \(=3\times 3\times 10\times 10\)
    \(=3\times 3\times 2\times 5\times 2\times 5\)
    \(=2\times 2\times 3\times 3\times 5\times 5\)

 

b.    \(\sqrt{900}\) \(=\sqrt{2\times 2\times 3\times 3\times 5\times 5}\)
    \(=\sqrt{(2\times 3\times 5)\times (2\times 3\times 5)}\)
    \(=\sqrt{30\times 30}\)
    \(=30\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-20-Prime factors, smc-4214-30-Roots

Indices, SM-Bank 061

  1. Write 1024 as a product of its prime factors.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Hence find \(\sqrt{1024}\).  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\)

b.    \(32\)

Show Worked Solution
a.    \(1024\) \(=2\times 512\)
    \(=2\times 2\times 256\)
    \(=2\times 2\times 2\times 128\)
    \(=2\times 2\times 2\times 2\times 64\)
    \(=2\times 2\times 2\times 2\times 8\times 8\)
    \(=2\times 2\times 2\times 2\times 2\times 4\times 2\times 4\)
    \(=2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\)

 

b.    \(\sqrt{1024}\) \(=\sqrt{2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2}\)
    \(=\sqrt{(2\times 2\times 2\times 2\times 2)\times (2\times 2\times 2\times 2\times 2)}\)
    \(=\sqrt{32\times 32}\)
    \(=32\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-20-Prime factors, smc-4214-30-Roots

Indices, SM-Bank 060

  1. Write 324 as a product of its prime factors.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Hence find \(\sqrt{324}\).  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(2\times 2\times 3\times 3\times 3\times 3\)

b.    \(18\)

Show Worked Solution
a.    \(324\) \(=2\times 162\)
    \(=2\times 2\times 81\)
    \(=2\times 2\times 9\times 9\)
    \(=2\times 2\times 3\times 3\times 3\times 3\)

 

b.    \(\sqrt{324}\) \(=\sqrt{2\times 2\times 3\times 3\times 3\times 3}\)
    \(=\sqrt{(2\times 3\times 3)\times (2\times 3\times 3)}\)
    \(=\sqrt{18\times 18}\)
    \(=18\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-20-Prime factors, smc-4214-30-Roots

Indices, SM-Bank 059

  1. Write 256 as a product of its prime factors.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Hence find \(\sqrt{256}\).  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\)

b.    \(16\)

Show Worked Solution
a.    \(256\) \(=2\times 128\)
    \(=2\times 2\times 64\)
    \(=2\times 2\times 2\times 32\)
    \(=2\times 2\times 2\times 2\times 16\)
    \(=2\times 2\times 2\times 2\times 2\times 8\)
    \(=2\times 2\times 2\times 2\times 2\times 2\times 4\)
    \(=2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\)

 

b.    \(\sqrt{256}\) \(=\sqrt{2\times 2\times 2\times 2\times 2\times 2\times 2\times 2}\)
    \(=\sqrt{(2\times 2\times 2\times 2)\times (2\times 2\times 2\times 2)}\)
    \(=\sqrt{16\times 16}\)
    \(=16\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-20-Prime factors, smc-4214-30-Roots

Indices, SM-Bank 058

  1. Write 216 as a product of its prime factors.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Hence find \(\sqrt[3]{216}\).  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(2\times 2\times 2\times 3\times 3\times 3\)

b.    \(6\)

Show Worked Solution
a.    \(216\) \(=2\times 108\)
    \(=2\times 2\times 54\)
    \(=2\times 2\times 2\times 27\)
    \(=2\times 2\times 2\times 3\times 9\)
    \(=2\times 2\times 2\times 3\times 3\times 3\)

 

b.    \(\sqrt[3]{216}\) \(=\sqrt[3]{2\times 2\times 2\times 3\times 3\times 3}\)
    \(=\sqrt[3]{(2\times 3)\times (2\times 3)\times (2\times 3)}\)
    \(=\sqrt[3]{6\times 6\times 6}\)
    \(=6\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 057

  1. Write 8 as a product of its prime factors.  (2 marks)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Hence find \(\sqrt[3]{8}\).  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(2\times 2\times 2\)

b.    \(2\)

Show Worked Solution
a.    \(8\) \(=2\times 4\)
    \(=2\times 2\times 2\)

 

b.    \(\sqrt[3]{8}\) \(=\sqrt[3]{2\times 2\times 2}\)
    \(=2\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 056

Using divisibility tests, find the largest number less than 500 that is divisible by 9.   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{See worked solution}\)

Show Worked Solution

\(\text{A number is divisible by }9\ \text{if the sum of the digits is divisible by }9.\)

\(\text{Checking numbers less than } 500\)

\(499=4+9+9=22\ \Rightarrow\ \text{ not divisible by 9}\)

\(498=4+9+8=21\ \Rightarrow\ \text{ not divisible by 9}\)

\(497=4+9+7=20\ \Rightarrow\ \text{ not divisible by 9}\)

\(496=4+9+6=19\ \Rightarrow\ \text{ not divisible by 9}\)

\(495=4+9+5=18\ \Rightarrow\ \text{ divisible by 9}\ \checkmark\)

\(\therefore\ 495\ \text{is the largest number less than }500\ \text{that is divisible by }9.\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-25-Divisibility

Indices, SM-Bank 055

Using divisibility tests, find the smallest number greater than 200 that is divisible by 6.   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{See worked solution}\)

Show Worked Solution

\(\text{A number is divisible by }6\ \text{if it is divisible by both }2\ \text{and }3.\)

\(\text{A number is divisible by }2\ \text{if the last digit is  }2 , 4 , 6 , 8 , 0.\)

\(\therefore\ \text{The possible numbers are in the pattern }202 , 204 , 206 …\ \text{as they are all divisible by }2\)

\(\text{A number is divisible by }3\ \text{if the sum of the digits is divisible by }3.\)

\(2+0+2=4\ \Rightarrow\ \text{ not divisible by 3}\)

\(2+0+4=6\ \Rightarrow\ \text{ divisible by 3}\ \checkmark\)

\(\therefore\ 204\ \text{is the smallest number greater than }200\ \text{that is divisible by }6.\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-25-Divisibility

Indices, SM-Bank 054

Using divisibility tests, find the smallest number greater than 1000 that is divisible by 6.   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{See worked solution}\)

Show Worked Solution

\(\text{A number is divisible by }6\ \text{if it is divisible by both }2\ \text{and }3.\)

\(\text{A number is divisible by }2\ \text{if the last digit is  }2 , 4 , 6 , 8 , 0.\)

\(\therefore\ \text{The first possible number is }1002\ \text{as it is divisible by }2\)

\(\text{A number is divisible by }3\ \text{if the sum of the digits is divisible by }3.\)

\(1+0+0+2=3\ \Rightarrow\ \text{divisible by 3}\ \checkmark\)

\(\therefore 1002\ \text{is the smallest number greater than }1000\ \text{that is divisible by }6.\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-25-Divisibility

Indices, SM-Bank 053

A number is divisible by 12 if it is also divisible by 3 and 4.

Prove, using the divisibility tests for 3 and 4, that 756 is divisible by 12.   (2 marks)

Show Answers Only

\(\text{See worked solution}\)

Show Worked Solution

\(\text{A number is divisible by }3\ \text{if the sum of the digits is divisible by }3.\)

\(7+5+6=18\ \Rightarrow\ \text{divisible by 3}\ \checkmark\)

\(\text{For divisibility by }4\ \text{the last 2 digits in the number must be divisible by }4. \)

\(56\ ÷\ 4=14\ \Rightarrow\ \text{divisible by 4}\ \checkmark\)

\(\therefore 756\ \text{is divisible by }12\ \text{as it is divisible by both }3\ \text{and }4.\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-25-Divisibility

Indices, SM-Bank 052

Prove using divisibility tests that 282 is divisible by 6.   (2 marks)

Show Answers Only

\(\text{See worked solution}\)

Show Worked Solution

\(\text{A number is divisible by }6\ \text{if it is divisible by both }2\ \text{and }3.\)

\(\text{For divisibility by }2\ \text{the number must end in }2 , 4 , 6 , 8 , 0.\ \checkmark\)

\(\text{For divisibility by }3\ \text{the sum of the digits must be divisible by }3.\)

\(2+8+2=12\ \Rightarrow\ \text{divisible by 3}\ \checkmark\)

\(\therefore 282\ \text{is divisible by }6\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-25-Divisibility

Indices, SM-Bank 051 MC

Which of the following numbers is not divisible by \(9\)?

  1. 234
  2. 1845
  3. 506
  4. 126
Show Answers Only

\(C\)

Show Worked Solution

\(\text{A number is divisible by }9\ \text{if the sum of the digits is divisible by }9.\)

\(\text{Option A:}\rightarrow\) \(\ 2+3+4=9\ \checkmark\)
\(\text{Option B:}\rightarrow\) \(\ 1+8+4+5=18\ \checkmark\)
\(\text{Option C:}\rightarrow\) \(\ 5+0+6=11\ -\text{not divisible by }9\)
\(\text{Option D:}\rightarrow\) \(\ 1+2+6=9\ \checkmark\)

 
\(\Rightarrow C\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-25-Divisibility

Indices, SM-Bank 050 MC

Which of the following numbers is not divisible by \(5\)?

  1. \(1800\)
  2. \(95\)
  3. \(102\)
  4. \(1\ 202\ 005\)
Show Answers Only

\(C\)

Show Worked Solution

\(\text{A number is divisible by }5\ \text{if the last digit is a }5 \text{ or }0.\)

\(\text{Option C:}\rightarrow\) \(\ 102\ \text{does not end in }5 \text{ or }0.\)

 
\(\Rightarrow C\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-25-Divisibility

Indices, SM-Bank 049 MC

Which of the following numbers is not divisible by 2?

  1. 505
  2. 44
  3. 1258
  4. 1202
Show Answers Only

\(A\)

Show Worked Solution

\(\text{A number is divisible by }2\ \text{if the last digit is a }2 , 4 , 6 , 8 \text{ or }0.\)

\(\text{Option A:}\rightarrow\) \(505\ \text{does not end in }2 , 4 , 6 , 8 \text{ or }0.\)

 
\(\Rightarrow A\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-25-Divisibility

Indices, SM-Bank 048 MC

Which of the following numbers is not divisible by 4?

  1. 112
  2. 32
  3. 502
  4. 608
Show Answers Only

\(C\)

Show Worked Solution

\(\text{A number is divisible by }4\ \text{if the last 2 digits are divisible by }4.\)

\(\text{Option A:}\rightarrow\) \(\ 12\ ÷\ 4=3\ \ \checkmark\)
\(\text{Option B:}\rightarrow\) \(\ 32\ ÷\ 4=8\ \ \checkmark\)
\(\text{Option C:}\rightarrow\) \(\ 02\ \text{not divisible by 4}\)
\(\text{Option D:}\rightarrow\) \(\ 08\ ÷\ 4=2\ \ \checkmark\)

 
\(\Rightarrow C\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-25-Divisibility

Indices, SM-Bank 047 MC

Which of the following numbers is not divisible by 3?

  1. 3102
  2. 239
  3. 42
  4. 8121
Show Answers Only

\(B\)

Show Worked Solution

\(\text{A number is divisible by }3\ \text{if the sum of its digits is divisible by }3.\)

\(\text{Option A:}\rightarrow\) \(3+1+0+2=6\ \ \checkmark\)
\(\text{Option B:}\rightarrow\) \(2+3+9=14\ \ \text{not divisible by 3}\)
\(\text{Option C:}\rightarrow\) \(4+2=6\ \ \checkmark\)
\(\text{Option D:}\rightarrow\) \(8+1+2+1=12\ \ \checkmark\)

 
\(\Rightarrow B\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-25-Divisibility

Indices, SM-Bank 046

Write \(324\) as a product of its prime factors in index form.  (2 marks)

Show Answers Only

\(2^2\times3^4\)

Show Worked Solution
\(324\) \(=4\times 81\)
  \(=2\times 2\times 9\times 9\)
  \(=2\times 2\times 3\times 3\times 3\times 3\)
  \(=2^2\times3^4\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-20-Prime factors

Indices, SM-Bank 045

Write 78 as a product of its prime factors.  (2 marks)

Show Answers Only

\(2\times 3\times 13\)

Show Worked Solution
\(78\) \(=2\times 39\)
  \(=2\times 3\times 13\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-20-Prime factors

Indices, SM-Bank 044

Write 110 as a product of its prime factors.  (2 marks)

Show Answers Only

\(2\times 5\times 11\)

Show Worked Solution
\(110\) \(=10\times 11\)
  \(=2\times 5\times 11\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-20-Prime factors

  • 1
  • 2
  • Next Page »

Copyright © 2014–2025 SmarterEd.com.au · Log in