SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Circle Geometry, SMB-008

In the diagram, \(AC\) is a diameter of the circle centred at \(O\), and \(OA = AB\).
 

Find the value of \(\theta\).   (3 marks)   

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\theta = 30^{\circ}\)

Show Worked Solution

\(\angle ABC=90^{\circ}\ \ \text{(angle in semi-circle)}\)

\(OA=OB\ \ \text{(radii)} \)

\( \angle OAB=60^{\circ}\ \ ( \Delta OAB\ \text{is equilateral}) \)

\(\theta\) \(= 180-(90+60)\ \ (180^{\circ}\ \text{in}\ \Delta) \)  
  \(= 30^{\circ} \)  

Filed Under: Circle Geometry Tagged With: num-title-ct-patha, smc-4240-10-Angles on arcs

Copyright © 2014–2025 SmarterEd.com.au · Log in