SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Circle Geometry, SMB-009

In the diagram, \(OB\) meets the chord \(AC\) such that \(AB = BC\).

The length of chord \(AC = 24\), and \(OC = 13\). 
 

Find the length of \(OB\).  (3 marks)   

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(OB=5\)

Show Worked Solution

\(OB \perp AC\ \ \text{(line through centre that bisects chord)}\)

\(BC= \dfrac{1}{2} \times 24 = 12 \)

\(\text{Using Pythagoras in}\ \Delta OBC :\)

\(OB^2\) \(= 13^2-12^2 \)  
  \(= 25\)  
\(\therefore OB\) \(=5\)  

Filed Under: Circle Geometry Tagged With: num-title-ct-path, smc-4240-50-Chord properties

Copyright © 2014–2025 SmarterEd.com.au · Log in