SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Circle Geometry, SMB-019

The diagram shows a large semicircle with diameter  `AB`  and two smaller semicircles with diameters  `AC`  and  `BC`, respectively, where  `C`  is a point on the diameter  `AB`. The point  `M`  is the centre of the semicircle with diameter  `AC`.

The line perpendicular to  `AB`  through  `C`  meets the largest semicircle at the point  `D`. The points  `S`  and  `T`  are the intersections of the lines  `AD`  and  `BD`  with the smaller semicircles. The point  `X`  is the intersection of the lines  `CD`  and  `ST`.
 

Explain why `CTDS` is a rectangle.   (3 marks)

--- 7 WORK AREA LINES (style=lined) ---

Show Answers Only

`text(Proof)\ \ text{(See Worked Solutions)}`

Show Worked Solution

`/_SDT = 90°\ text{(angle in semi-circle)}`

`/_ ASC = 90°\ \ text{(angle in semi-circle)}`

`=> /_ CSD = 180-90=90°\ \ text{(} /_ ASD\ text{is a straight line)}`

`text(Similarly,)`

`/_CTB = /_CTD=90°`

`/_SCT = 90°\ \ text{(angle sum of quadrilateral}\ CTDS text{)}`

`text(S)text(ince all angles are right angles,)`

`CTDS\ text(is a rectangle)` 

Filed Under: Circle Geometry Tagged With: num-title-ct-path, smc-4240-20-Semicircles

Copyright © 2014–2025 SmarterEd.com.au · Log in