SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Linear Relationships, SM-Bank 041

  1. Plot the points from the table on the number plane below and join the points using a ruler. (2 marks)
    \begin{array} {|l|c|c|c|}
    \hline
    \rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} &\ \ -2\ \  &\ \ -1\ \  &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \  \\
    \hline
    \rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & 5 & 4  & 3  & 2 & 1\\
    \hline
    \end{array}
     
  2. What do you notice about the points?  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. Using either the table or the graph, state the rule connecting \(\large x\) and \(\large y\).  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.   

b.    \(\text{They form a straight line.}\)

c.    \(y=3-x\)

Show Worked Solution

a.  

b.    \(\text{They form a straight line.}\)

c.   

\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} &\ \ -2\ \  &\ \ -1\ \  &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \  \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & 3-(-2)=5 & 3-(-1)=4  & 3-0=3 & 3-1=2 & 3-2=1\\
\hline
\end{array}

\(\therefore\ \text{Rule:  }y=3-x\)

Filed Under: Linear Relationships Tagged With: num-title-ct-core, smc-4216-25-Straight lines

Copyright © 2014–2025 SmarterEd.com.au · Log in