SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Linear Relationships, SM Bank 045

  1. Complete the tables of values below for each given rule.  (3 marks)

    \(y=2x+1\)
    \begin{array} {|l|c|c|c|c|}
    \hline
    \rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -1  &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \  \\
    \hline
    \rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} &   &   &  & \\
    \hline
    \end{array}

     

    \(y=x-2\)
    \begin{array} {|l|c|c|c|c|}
    \hline
    \rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -1  &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \  \\
    \hline
    \rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} &   &   &  & \\
    \hline
    \end{array}


  2. On the number plane below, graph the equations from part (a).  (2 marks)
     
  3. Using the graph, find the point of intersection of the two lines.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.

\(y=2x+1\)
\begin{array} {|l|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -1  &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \  \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & -1  & 1  & 3 & 5\\
\hline
\end{array}

 

\(y=x-2\)
\begin{array} {|l|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -1  &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \  \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & -3  & -2  & -1 & 0\\
\hline
\end{array}

 b.   

c.     \((-3 , -5)\)

Show Worked Solution

a.

\(y=2x+1\)
\begin{array} {|l|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -1  &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \  \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & -1  & 1  & 3 & 5\\
\hline
\end{array}

 

\(y=x-2\)
\begin{array} {|l|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -1  &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \  \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & -3  & -2  & -1 & 0\\
\hline
\end{array}

 b.   

c.     \(\text{Point of intersection:   }(-3 , -5)\)

Filed Under: Linear Relationships Tagged With: num-title-ct-core, smc-4216-25-Straight lines

Copyright © 2014–2025 SmarterEd.com.au · Log in