- Complete the tables of values below for each given rule. (3 marks)
\(y=3-x\)
\begin{array} {|l|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -1 &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & & & & \\
\hline
\end{array}\(y=3x-1\)
\begin{array} {|l|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -1 &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & & & & \\
\hline
\end{array} - On the number plane below, graph the equations from part (a). (2 marks)
- Using the graph, find the point of intersection of the two lines. (1 mark)
--- 1 WORK AREA LINES (style=lined) ---