SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Linear Relationships, SM-Bank 054

Renee and Leisa are saving money so they can visit their grandmother on a holiday.

Renee has $100 and plans to save $30 each week.

Leisa has $200 and plans to save $10 each week.

  1. Write an equation to represent

    (i)   Renee's savings  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

    (ii)  Leisa's savings  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. Complete the following tables of values for the equations above.  (2 marks)

    Renee's savings
    \begin{array} {|l|c|c|c|}
    \hline
    \rule{0pt}{2.5ex}\text{Weeks }(w) \ \rule[-1ex]{0pt}{0pt} &\ \ 0\ \ &\ \ 1\ \   &\ \ 2\ \ &\ \ 3\ \ \\
    \hline
    \rule{0pt}{2.5ex} \text{Savings }(s) \ \rule[-1ex]{0pt}{0pt} &  &   &   &  \\
    \hline
    \end{array}

    \(\ \ \ \ \ \ \ \)

    Leisa's savings
    \begin{array} {|l|c|c|c|}
    \hline
    \rule{0pt}{2.5ex}\text{Weeks }(w) \ \rule[-1ex]{0pt}{0pt} &\ \ 0\ \ &\ \ 1\ \   &\ \ 2\ \ &\ \ 3\ \ \\
    \hline
    \rule{0pt}{2.5ex} \text{Savings }(s) \ \rule[-1ex]{0pt}{0pt} &  &   &   &  \\
    \hline
    \end{array}

  3. Using the tables of values, graph both equations on the number plane below. Be sure to extend your lines to the end of the grid.  (2 marks)
     

  4. After how many weeks will Renee and Leisa have saved the same amount?  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    (i)   \(s=100+30w\)

(ii)  \(s=200+10w\)

b.

\(\text{Renee’s savings:   }s=100+30w\)
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex}\text{Weeks }(w) \ \rule[-1ex]{0pt}{0pt} &\ \ 0\ \ &\ \ 1\ \   &\ \ 2\ \ &\ \ 3\ \ \\
\hline
\rule{0pt}{2.5ex} \text{Savings }(s) \ \rule[-1ex]{0pt}{0pt} & 100 & 130  & 160  &  190\\
\hline
\end{array}

\(\ \ \ \ \ \ \ \)

\(\text{Leisa’s savings:   }s=200+10w\)
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex}\text{Weeks }(w) \ \rule[-1ex]{0pt}{0pt} &\ \ 0\ \ &\ \ 1\ \   &\ \ 2\ \ &\ \ 3\ \ \\
\hline
\rule{0pt}{2.5ex} \text{Savings }(s) \ \rule[-1ex]{0pt}{0pt} & 200 & 210  & 220  &  230\\
\hline
\end{array}

c.

d.    \(5\ \text{weeks}\)

Show Worked Solution

a.    (i)   \(s=100+30w\)

(ii)  \(s=200+10w\)

b.

\(\text{Renee’s savings:   }s=100+30w\)
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex}\text{Weeks }(w) \ \rule[-1ex]{0pt}{0pt} &\ \ 0\ \ &\ \ 1\ \   &\ \ 2\ \ &\ \ 3\ \ \\
\hline
\rule{0pt}{2.5ex} \text{Savings }(s) \ \rule[-1ex]{0pt}{0pt} & 100 & 130  & 160  &  190\\
\hline
\end{array}

\(\ \ \ \ \ \ \ \)

\(\text{Leisa’s savings:   }s=200+10w\)
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex}\text{Weeks }(w) \ \rule[-1ex]{0pt}{0pt} &\ \ 0\ \ &\ \ 1\ \   &\ \ 2\ \ &\ \ 3\ \ \\
\hline
\rule{0pt}{2.5ex} \text{Savings }(s) \ \rule[-1ex]{0pt}{0pt} & 200 & 210  & 220  &  230\\
\hline
\end{array}

c.

d.   \(\text{Method 1 – Graphically by inspection}\)

\(\text{Lines intersect when }w=5\ \text{and }s=$250\)
 

\(\text{Method 2 – Algebraically}\)

\(\text{Solve }s=100+30w\ \text{ and }s=200+10w\ \text{simultaneously}\)

\(100+30w\) \(=200+10w\)
\(30w-10w\) \(=200-100\)
\(20w\) \(=100\)
\(w\) \(=\dfrac{100}{20}=5\)

\(\therefore\ \text{Amounts are equal after }5 \text{ weeks}.\)

Filed Under: Linear Relationships Tagged With: num-title-ct-core, smc-4216-25-Straight lines

Copyright © 2014–2025 SmarterEd.com.au · Log in