SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Polynomials, SMB-009

Let  `P(x) = x^3+5x^2+2x-8`.

  1. Show that  `P(-2) = 0`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Hence, factor the polynomial  `P(x)`  as  `A(x)B(x)`, where  `B(x)`  is a quadratic polynomial.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solutions)`
  2. `P(x)=(x+2)(x^2+3x-4)`
Show Worked Solution
i.    `P(-2)` `= (-2)^3+ 5(-2)^2+2(-2)-8`
    `=-8+20-4-8`
    `= 0`

 

ii.  `text{Since}\ \ P(-2)=0\ \ =>\ \ (x+2)\ text{is a factor of}\ P(x)`

`P(x)=A(x)B(x)=(x+2)*B(x)`

`text{Using long division:}\ P(x)-:(x+2)=B(x)`
 

`:.P(x)=(x+2)(x^2+3x-4)`

Filed Under: Polynomials Tagged With: num-title-ct-patha, smc-4242-10-Factor Theorem, smc-4242-40-Long division

Copyright © 2014–2025 SmarterEd.com.au · Log in