SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Polynomials, SMB-012

`h(x)=x^3+3x^2+x-5`.

  1. Show  `h(1)=0`  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. Express `h(x)` in the form `h(x)=(x-1)*g(x)` where `g(x)` is a quadratic factor.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  3. Justify that `h(x)` only has one zero.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    `text{Proof (See worked solutions)}`

ii.    `h(x)=(x-1)(x^2+4x+5)`

iii.   `text{Proof (See worked solutions)}`

Show Worked Solution

i.   `h(x)=x^3+3x^2+x-5`.

`h(1) = 1+3+1-5=0`
 

ii.   `h(x)=(x-1)*g(x)`

`text{By long division:}`
 

`h(x)=(x-1)(x^2+4x+5)`
 

iii.   `text{Consider the roots of}\ \ y=x^2+4x+5`

`Δ = b^2-4ac=4^2-4*1*5=-4<0`

`text{Since}\ \ Δ<0\ \ =>\ \ text{No zeros (roots)}`

`:. h(x)\ text{only has 1 zero at}\ x=1\ (h(1)=0)`

Filed Under: Polynomials Tagged With: num-title-ct-patha, smc-4242-10-Factor Theorem, smc-4242-40-Long division, smc-4242-50-Discriminant

Copyright © 2014–2025 SmarterEd.com.au · Log in