A biased die has 6 faces numbered from 1 to 6.
Jackson throws the die 60 times and records the results in the table below.
\begin{array} {|c|c|}
\hline
\rule{0pt}{2.5ex} \textbf{Number} \rule[-1ex]{0pt}{0pt} & \ \ 1\ \ & \ \ 2 \ \ & \ \ 3 \ \ & \ \ 4 \ \ & \ \ 5 \ \ & \ \ 6 \ \ \\
\hline
\rule{0pt}{2.5ex} \textbf{Times} \rule[-1ex]{0pt}{0pt} & \ \ 8\ \ & \ \ 14 \ \ & \ \ 9 \ \ & \ \ 13 \ \ & \ \ 7 \ \ & \ \ 9 \\
\hline
\end{array}
Using the table, what is the probability that Jackson throws a 2 on his next throw?
- \(\dfrac{7}{30}\)
- \(\dfrac{14}{46}\)
- \(\dfrac{1}{5}\)
- \(\dfrac{1}{6}\)