SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Probability, SM-Bank 069

Wendy has a number of different types of flowers as shown in the table below. 
 

\begin{array} {|c|c|}
\hline
\rule{0pt}{2.5ex} \textbf{Type of Flower} \rule[-1ex]{0pt}{0pt} & \textbf{Number of Flowers} \\
\hline
\rule{0pt}{2.5ex} \text{Carnation} \rule[-1ex]{0pt}{0pt} & 8 \\
\hline
\rule{0pt}{2.5ex} \text{Tulip} \rule[-1ex]{0pt}{0pt} & 6 \\
\hline
\rule{0pt}{2.5ex} \text{Dandelion} \rule[-1ex]{0pt}{0pt} & 10 \\
\hline
\rule{0pt}{2.5ex} \text{Rose} \rule[-1ex]{0pt}{0pt} & 8 \\
\hline
\end{array}

  1. What is the probability that a randomly selected flower will be either a carnation or a tulip?  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  2. What is the probability that a randomly selected flower will not be a rose?  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(\dfrac{7}{16}\)

b.    \(\dfrac{3}{4}\)

Show Worked Solution
a.    \(P\text{(carnation or tulip)}\) \(=\dfrac{\text{number carnations + number tulips}}{\text{total number of flowers}}\)
    \(=\dfrac{8+6}{32}\)
    \(=\dfrac{14}{32}=\dfrac{7}{16}\)

 

b.    \(P\text{(not a rose)}\) \(=1-P\text{(is a rose)}\)
    \(=1-\dfrac{\text{number roses}}{\text{total number of flowers}}\)
    \(=1-\dfrac{8}{32}\)
    \(=1-\dfrac{1}{4}\)
    \(=\dfrac{3}{4}\)

Filed Under: Probability Tagged With: num-title-ct-core, smc-4225-15-Single-stage events, smc-4225-20-Complementary events

Copyright © 2014–2025 SmarterEd.com.au · Log in