Some men and women were surveyed at a football game. They were asked which team they supported. The results are shown in the two-way table.
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} &\ \textit{Team A }\ \rule[-1ex]{0pt}{0pt} &\ \textit{Team B}\ \ &\ \textit{Totals}\ \ \\
\hline
\rule{0pt}{2.5ex}\text{Men}\rule[-1ex]{0pt}{0pt} & 125 & 100 & 225 \\
\hline
\rule{0pt}{2.5ex}\text{Women}\rule[-1ex]{0pt}{0pt} & 75 & 90 & 165 \\
\hline
\rule{0pt}{2.5ex}\text{Totals}\rule[-1ex]{0pt}{0pt} & 200 & 190 & 390 \\
\hline
\end{array}
A man was chosen at random. What is the probability that he supports Team B, correct to the nearest percent? (2 marks)
--- 4 WORK AREA LINES (style=lined) ---