SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Properties of Geometric Figures, SM-Bank 011

In the diagram, \(AB\) is parallel to \(DE\).
 

  1. On the diagram, label the alternate angles to \(a^{\circ}\) and \(b^{\circ}\).   (1 mark)

    --- 0 WORK AREA LINES (style=lined) ---

  2. Using part (a), show that the sum of internal angles of a triangle equals 180°.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    
     

b.    \(DE\ \text{is a straight line.}\)

\(a^{\circ} + b^{\circ} + c^{\circ} = 180^{\circ}\ \ \text{(180° in a straight line)}\)

\(\therefore \ \text{Angle sum of}\ \Delta = a^{\circ} + b^{\circ} + c^{\circ} = 180^{\circ}\)

Show Worked Solution

a.    
       

b.    \(DE\ \text{is a straight line.}\)

\(a^{\circ} + b^{\circ} + c^{\circ} = 180^{\circ}\ \ \text{(180° in a straight line)}\)

\(\therefore \ \text{Angle sum of}\ \Delta = a^{\circ} + b^{\circ} + c^{\circ} = 180^{\circ}\)

Filed Under: Triangles Tagged With: num-title-ct-core, smc-5008-50-Other problems, smc-5008-60-Proofs

Copyright © 2014–2025 SmarterEd.com.au · Log in