SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Quadratics, SMB-006

  1. Complete the table of values for the equation  `y=2-x^2/2`.  (1 mark)

\begin{array} {|l|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} x \rule[-1ex]{0pt}{0pt} & -2 & -1 & \ \ 0\ \  & \ \ 1\ \  & \ \ 2 \ \  \\
\hline
\rule{0pt}{2.5ex} y \rule[-1ex]{0pt}{0pt} &   &  & 2 &  &  0 \\
\hline
\end{array}

  1. Sketch the graph  `y=2-x^2/2`  (2 marks)  
      

      
  2. For what range of `x`-values is the parabola concave up?  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

i.   

\begin{array} {|l|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} x \rule[-1ex]{0pt}{0pt} & -2 & -1 & \ \ 0\ \  & \ \ 1\ \  & \ \ 2 \ \  \\
\hline
\rule{0pt}{2.5ex} y \rule[-1ex]{0pt}{0pt} & 0  & \frac{3}{2} & 2 & \frac{3}{2} &  0 \\
\hline
\end{array}

ii. 

 

iii.   `text{The parabola is concave down for all values of}\ x.`

`=>\ text{There are no values of}\ x\ text{where the graph is concave up.}`

Show Worked Solution

i.   

\begin{array} {|l|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} x \rule[-1ex]{0pt}{0pt} & -2 & -1 & \ \ 0\ \  & \ \ 1\ \  & \ \ 2 \ \  \\
\hline
\rule{0pt}{2.5ex} y \rule[-1ex]{0pt}{0pt} & 0  & \frac{3}{2} & 2 & \frac{3}{2} &  0 \\
\hline
\end{array}

ii. 

 

iii.   `text{The parabola is concave down for all values of}\ x.`

`=>\ text{There are no values of}\ x\ text{where the graph is concave up.}`

Filed Under: Quadratics Tagged With: num-title-ct-coreb, smc-4443-20-Sketch graphs

Copyright © 2014–2025 SmarterEd.com.au · Log in