SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Right-angled Triangles, SM-Bank 044

Calculate the perpendicular height of the isosceles triangle below, giving your answer correct to one decimal place.  (2 marks)

 

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\approx 6.9\ (1\text{ d.p.})\)

Show Worked Solution

\(\text{Pythagoras’ Theorem states:  }a^2+b^2=c^2\)

\(\text{Let }b=3\ \text{and }c=7.5\)

\(a^2+3^2\) \(=7.5^2\)
\(a^2\) \(=7.5^2-3^2\)
\(a^2\) \(=47.25\)
\(a\) \(=\sqrt{46.01}\)
\(a\) \(=6.873\dots\approx 6.9\ (1\text{ d.p.})\)

Filed Under: Right-angled Triangles Tagged With: num-title-ct-core, smc-4218-35-Short side

Copyright © 2014–2025 SmarterEd.com.au · Log in