SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Right-angled Triangles, SM-Bank 051

Use Pythagoras' Theorem to calculate the perimeter of the trapezium below, correct to 1 decimal place.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(31.1\ \text{mm}\ (1\ \text{d.p.})\)

Show Worked Solution

\(\text{Find length of sloped side of trapezium.}\)

\(\text{Pythagoras’ Theorem states:  }c^2=a^2+b^2\)

\(\text{Let }a=4\ \text{and }b=7)

\(\text{Then}\ \ c^2\) \(=4^2+7^2\)
\(c^2\) \(=65\)
\(c\) \(=\sqrt{65}\)
\(c\) \(=8.062\dots\)

 
\(\text{Perimeter}\)

\(=6+7+10+8.062\dots\)

\(=31.062\dots\approx 31.1\ \text{mm}\ (1\ \text{d.p.})\)

Filed Under: Right-angled Triangles Tagged With: num-title-ct-core, smc-4218-30-Hypotenuse, smc-4218-40-Perimeter

Copyright © 2014–2025 SmarterEd.com.au · Log in