SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Right-angled Triangles, SM-Bank 053

  1. Use Pythagoras' Theorem to calculate the length of the hypotenuse in the isosceles triangle below. Give your answer correct in exact surd form.  (2 marks)
     
           

    --- 4 WORK AREA LINES (style=lined) ---

  2. Using your result from part (a) above, calculate the perimeter of the shape below, correct to 1 decimal place.  (2 marks)
     
         

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(\sqrt{50}\ \text{cm (exact surd form)}\)

b.    \(30.6\ \text{cm (1 d.p.)}\)

Show Worked Solution

a.    \(\text{Pythagoras’ Theorem states:  }c^2=a^2+b^2\)

\(\text{Let }a=5\ \text{and }b=5\)

\(\text{Then}\ \ c^2\) \(=5^2+5^2\)
\(c^2\) \(=50\)
\(c\) \(=\sqrt{50}\ \text{cm (exact surd form)}\)

 

b.    \(\text{Perimeter}\) \(=\text{chord (a)}\ +\dfrac{3}{4}\times\text{circumference}\)
    \(=\sqrt{50}+\dfrac{3}{4}\times 2\pi r\)
    \(=\sqrt{50}+\dfrac{3}{4}\times 2\pi\times 5\)
    \(=30.633\dots\)
    \(\approx 30.6\ \text{cm (1 d.p.)}\)

Filed Under: Right-angled Triangles Tagged With: num-title-ct-core, smc-4218-30-Hypotenuse, smc-4218-40-Perimeter

Copyright © 2014–2025 SmarterEd.com.au · Log in