SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, 2ADV F2 EQ-Bank 2

The curve  \(f(x)=x^2\)  is transformed to  \(g(x)=3 f[2(x+2)]\)

  1. Write the equation of \(g(x)\)   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. \(P(-3,9)\) lies on \(f(x)=x^2\)
  3. Determine the corresponding co-ordinates of \(P\) on the curve \(g(x)\).   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

a.   \(g(x)=12(x+2)^2\)

b.   \(\left( -\dfrac{7}{2}, 27 \right) \)

Show Worked Solution
a.     \(g(x)\) \(=3[2(x+2)]^2\)
    \(=3 \times 4(x+2)^2\)
    \(=12(x+2)^2\)

 
b.
   \(P(-3,9)\ \text{lies on}\ \ f(x)=x^2 \)

\(\text{Find corresponding point on}\ f(x)\)

\(\text{Mapping}\ x_f\ \text{to}\ x_g: \)

\(2(x_g +2)=x_f\ \ \Rightarrow\ \ x_g=\dfrac{1}{2} x_f-2 \)

\(x_g=\dfrac {1}{2} \times -3 -2=-\dfrac{7}{2} \)
 

\(\text{Mapping}\ y_f\ \text{to}\ y_g: \)

\(y_g=3 \times y_f = 3 \times 9=27\)

\(\therefore\ \text{Corresponding point}\ = \left( -\dfrac{7}{2}, 27 \right) \)

Filed Under: Graph Transformations (Adv-2027), Transformations (Y12) Tagged With: Band 4, Band 5, smc-1008-10-Polynomials, smc-1008-70-Combinations, smc-1008-80-Corresponding points, smc-6408-10-Polynomials, smc-6408-60-Combinations, smc-6408-70-Corresponding Points

Copyright © 2014–2025 SmarterEd.com.au · Log in