SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Indices, SM-Bank 079

Evaluate  \(3\times\sqrt{81}+\sqrt[3]{27}\times 2\).  (2 marks)

Show Answers Only

\(33\)

Show Worked Solution
\(3\times \sqrt{81}+\sqrt[3]{27}\times 2\) \(=3\times\sqrt{9\times 9}+\sqrt[3]{3\times 3\times 3}\times 2\)
  \(=3\times 9+3\times 2\)
  \(=33\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 078

Evaluate \(3\times\sqrt[3]{64}-\sqrt{100}\).  (2 marks)

Show Answers Only

\(2\)

Show Worked Solution
\(3\times \sqrt[3]{64}-\sqrt{100}\) \(=3\times\sqrt[3]{4\times 4\times 4}-\sqrt{10\times 10}\)
  \(=3\times 4-10\)
  \(=2\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 077

Evaluate \(\sqrt[3]{27}-\sqrt{25}\).  (2 marks)

Show Answers Only

\(-2\)

Show Worked Solution
\(\sqrt[3]{27}-\sqrt{25}\) \(=\sqrt[3]{3\times 3\times 3}-\sqrt{5\times 5}\)
  \(=3-5\)
  \(=-2\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 076

Evaluate \(\sqrt{9}+\sqrt[3]{8}\).  (2 marks)

Show Answers Only

\(5\)

Show Worked Solution
\(\sqrt{9}+\sqrt[3]{8}\) \(=\sqrt{3\times 3}+\sqrt[3]{2\times 2\times 2}\)
  \(=3+2\)
  \(=5\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 075

Find the missing whole number that makes the following number sentence correct.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

Show Worked Solution

\(\text{Using trial and error method:}\)

\(\text{Test 1st square number}\ \rightarrow 1\)

\(\text{LHS:}\) \(\ 3\times 1^2+(\sqrt{25}-1)=3\times 1+(5-1)\)
  \(=7\)
\(\text{RHS:}\) \(\ \sqrt{1}\times 9\times 3-5=1\times 27-5\)
  \(=23\)

\(\text{LHS }\ne\text{ RHS}\)
 

\(\text{Test 2nd square number}\ \rightarrow 4\)

\(\text{LHS:}\) \(\ 3\times 4^2+(\sqrt{25}-4)=3\times 16+(5-4)\)
  \(=49\)
\(\text{RHS:}\) \(\ \sqrt{4}\times 9\times 3-5=2\times 27-5\)
  \(=49\)

\(\text{LHS }=\text{ RHS}\)

\(\therefore \ \)

 

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 074 MC

Between which two number does \(\sqrt{70}\)  lie?

  1. \(5\ \text{and }6\)
  2. \(6\ \text{and }7\)
  3. \(7\ \text{and }8\)
  4. \(8\ \text{and }9\)
Show Answers Only

\(D\)

Show Worked Solution
\(\text{Consider Option D:}\) \(\rightarrow\ \sqrt{64}=8\)
  \(\rightarrow\ \sqrt{81}=9\)

 

\(\therefore\ \sqrt{70}\ \text{lies between }\sqrt{64} \text{ and }\sqrt{81}\)

\(\therefore\ \sqrt{70}\ \text{lies between }8 \text{ and }9\)

\(\Rightarrow D\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 073 MC

Between which two number does \(\sqrt{30}\) lie?

  1. \(3\ \text{and }4\)
  2. \(4\ \text{and }5\)
  3. \(5\ \text{and }6\)
  4. \(6\ \text{and }7\)
Show Answers Only

\(C\)

Show Worked Solution
\(\text{Consider Option C:}\) \(\rightarrow\ \sqrt{25}=5\)
  \(\rightarrow\ \sqrt{36}=6\)

 

\(\therefore\ \sqrt{30}\ \text{lies between }\sqrt{25} \text{ and }\sqrt{36}\)

\(\therefore\ \sqrt{30}\ \text{lies between }5 \text{ and }6\)

 
\(\Rightarrow C\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 072

Show that  \(\sqrt{9\times 4}=\sqrt{9}\times \sqrt{4}\).  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{See worked solution}\)

Show Worked Solution
\(\text{LHS}:\sqrt{9\times 4}\) \(=\sqrt{ 3\times 3\times 2\times 2}\)
  \(=\sqrt{ 6\times 6}\)
  \(=6\)

 

\(\text{RHS}:\sqrt{9}\times \sqrt{4}\) \(=3\times 2\)
  \(=6\)

\(\therefore\ \text{LHS}\ =\ \text{RHS}\)

\(\therefore\ \sqrt{9\times 4}=\sqrt{9}\times \sqrt{4}\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 071

Show that  \(\sqrt{25\times 16}=\sqrt{25}\times \sqrt{16}\).  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{See worked solution}\)

Show Worked Solution
\(\text{LHS}:\sqrt{25\times 16}\) \(=\sqrt{ 5\times 5\times 4\times 4}\)
  \(=\sqrt{ 20\times 20}\)
  \(=20\)

 

\(\text{RHS}:\sqrt{25}\times \sqrt{16}\) \(=5\times 4\)
  \(=20\)

\(\therefore\ \text{LHS}\ =\ \text{RHS}\)

\(\therefore\ \sqrt{25\times 16}=\sqrt{25}\times \sqrt{16}\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 070

Show that  \(\sqrt{225}=\sqrt{25}\times \sqrt{9}\).  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{See worked solution}\)

Show Worked Solution
\(\text{LHS}:\sqrt{225}\) \(=\sqrt{ 5\times 45}\)
  \(=\sqrt{ 5\times 5\times 9}\)
  \(=\sqrt{ 5\times 5\times 3\times 3}\)
  \(=\sqrt{ 15\times 15}\)
  \(=15\)

 

\(\text{RHS}:\sqrt{25}\times \sqrt{9}\) \(=5\times 3\)
  \(=15\)

\(\therefore\ \text{LHS}\ =\ \text{RHS}\)

\(\therefore\ \sqrt{225}=\sqrt{25}\times \sqrt{9}\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 069

Show that  \(\sqrt{144}=\sqrt{36}\times \sqrt{4}\).  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{See worked solution}\)

Show Worked Solution
\(\text{LHS}:\sqrt{144}\) \(=\sqrt{ 12\times 12}\)
  \(=12\)

 

\(\text{RHS}:\sqrt{36}\times \sqrt{4}\) \(=6\times 2\)
  \(=12\)

\(\therefore\ \text{LHS}\ =\ \text{RHS}\)

\(\therefore\ \sqrt{144}=\sqrt{36}\times \sqrt{4}\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 068 MC

Given that  \(12^2=144\), then \(\sqrt{144}=\) ?

  1. \(288\)
  2. \(72\)
  3. \(12\)
  4. \(6\)
Show Answers Only

\(C\)

Show Worked Solution

\(144=12\times 12\ \ \text{(Given)}\)

\(\therefore \sqrt{144}\) \(=\sqrt{ 12\times 12}\)
  \(=12\)

 
\(\Rightarrow C\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 067 MC

Given that  \(17^2=289\), then \(\sqrt{289}=\) ?

  1. \(8.5\)
  2. \(13.5\)
  3. \(17\)
  4. \(578\)
Show Answers Only

\(C\)

Show Worked Solution

\(289=17\times 17\ \ \text{(Given)}\)

\(\therefore \sqrt{289}\) \(=\sqrt{ 17\times 17}\)
  \(=17\)

 
\(\Rightarrow C\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 066 MC

Given that  \(21^2=441\), then \(\sqrt{441}=\) ?

  1. \(21\)
  2. \(42\)
  3. \(420\)
  4. \(194\ 481\)
Show Answers Only

\(A\)

Show Worked Solution

\(441=21\times 21\ \ \text{(Given)}\)

\(\therefore \sqrt{441}\) \(=\sqrt{ 21\times 21}\)
  \(=21\)

 
\(\Rightarrow A\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 065 MC

Given that  \(4^3=64\), then \(\sqrt[3]{64}=\) ?

  1. \(2\)
  2. \(4\)
  3. \(8\)
  4. \(21.3\)
Show Answers Only

\(B\)

Show Worked Solution

\(64=4\times 4\times 4\ \ \text{(Given)}\)

\(\therefore \sqrt[3]{64}\) \(=\sqrt[3]{ 4\times 4\times 4}\)
  \(=4\)

 
\(\Rightarrow B\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 064 MC

Given that  \(8^3=512\), then \(\sqrt[3]{512}=\) ?

  1. \(8\)
  2. \(23\)
  3. \(128\)
  4. \(171\)
Show Answers Only

\(A\)

Show Worked Solution

\(512=8\times 8\times 8\ \ \text{(Given)}\)

\(\therefore \sqrt[3]{512}\) \(=\sqrt[3]{ 8\times 8\times 8}\)
  \(=8\)

 
\(\Rightarrow A\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 063 MC

Given that  \(5^3=125\), then \(\sqrt[3]{125}=\) ?

  1. \(62.5\)
  2. \(41.7\)
  3. \(11.2\)
  4. \(5\)
Show Answers Only

\(D\)

Show Worked Solution

\(125=5\times 5\times 5\ \ \text{(Given)}\)

\(\therefore \sqrt[3]{125}\) \(=\sqrt[3]{ 5\times 5\times 5}\)
  \(=5\)

 
\(\Rightarrow D\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 062

  1. Write 900 as a product of its prime factors.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Hence find \(\sqrt{900}\).  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(2\times 2\times 3\times 3\times 5\times 5\)

b.    \(30\)

Show Worked Solution
a.    \(900\) \(=9\times 100\)
    \(=3\times 3\times 10\times 10\)
    \(=3\times 3\times 2\times 5\times 2\times 5\)
    \(=2\times 2\times 3\times 3\times 5\times 5\)

 

b.    \(\sqrt{900}\) \(=\sqrt{2\times 2\times 3\times 3\times 5\times 5}\)
    \(=\sqrt{(2\times 3\times 5)\times (2\times 3\times 5)}\)
    \(=\sqrt{30\times 30}\)
    \(=30\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-20-Prime factors, smc-4214-30-Roots

Indices, SM-Bank 061

  1. Write 1024 as a product of its prime factors.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Hence find \(\sqrt{1024}\).  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\)

b.    \(32\)

Show Worked Solution
a.    \(1024\) \(=2\times 512\)
    \(=2\times 2\times 256\)
    \(=2\times 2\times 2\times 128\)
    \(=2\times 2\times 2\times 2\times 64\)
    \(=2\times 2\times 2\times 2\times 8\times 8\)
    \(=2\times 2\times 2\times 2\times 2\times 4\times 2\times 4\)
    \(=2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\)

 

b.    \(\sqrt{1024}\) \(=\sqrt{2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2}\)
    \(=\sqrt{(2\times 2\times 2\times 2\times 2)\times (2\times 2\times 2\times 2\times 2)}\)
    \(=\sqrt{32\times 32}\)
    \(=32\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-20-Prime factors, smc-4214-30-Roots

Indices, SM-Bank 060

  1. Write 324 as a product of its prime factors.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Hence find \(\sqrt{324}\).  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(2\times 2\times 3\times 3\times 3\times 3\)

b.    \(18\)

Show Worked Solution
a.    \(324\) \(=2\times 162\)
    \(=2\times 2\times 81\)
    \(=2\times 2\times 9\times 9\)
    \(=2\times 2\times 3\times 3\times 3\times 3\)

 

b.    \(\sqrt{324}\) \(=\sqrt{2\times 2\times 3\times 3\times 3\times 3}\)
    \(=\sqrt{(2\times 3\times 3)\times (2\times 3\times 3)}\)
    \(=\sqrt{18\times 18}\)
    \(=18\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-20-Prime factors, smc-4214-30-Roots

Indices, SM-Bank 059

  1. Write 256 as a product of its prime factors.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Hence find \(\sqrt{256}\).  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\)

b.    \(16\)

Show Worked Solution
a.    \(256\) \(=2\times 128\)
    \(=2\times 2\times 64\)
    \(=2\times 2\times 2\times 32\)
    \(=2\times 2\times 2\times 2\times 16\)
    \(=2\times 2\times 2\times 2\times 2\times 8\)
    \(=2\times 2\times 2\times 2\times 2\times 2\times 4\)
    \(=2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\)

 

b.    \(\sqrt{256}\) \(=\sqrt{2\times 2\times 2\times 2\times 2\times 2\times 2\times 2}\)
    \(=\sqrt{(2\times 2\times 2\times 2)\times (2\times 2\times 2\times 2)}\)
    \(=\sqrt{16\times 16}\)
    \(=16\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-20-Prime factors, smc-4214-30-Roots

Indices, SM-Bank 058

  1. Write 216 as a product of its prime factors.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Hence find \(\sqrt[3]{216}\).  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(2\times 2\times 2\times 3\times 3\times 3\)

b.    \(6\)

Show Worked Solution
a.    \(216\) \(=2\times 108\)
    \(=2\times 2\times 54\)
    \(=2\times 2\times 2\times 27\)
    \(=2\times 2\times 2\times 3\times 9\)
    \(=2\times 2\times 2\times 3\times 3\times 3\)

 

b.    \(\sqrt[3]{216}\) \(=\sqrt[3]{2\times 2\times 2\times 3\times 3\times 3}\)
    \(=\sqrt[3]{(2\times 3)\times (2\times 3)\times (2\times 3)}\)
    \(=\sqrt[3]{6\times 6\times 6}\)
    \(=6\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Indices, SM-Bank 057

  1. Write 8 as a product of its prime factors.  (2 marks)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Hence find \(\sqrt[3]{8}\).  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(2\times 2\times 2\)

b.    \(2\)

Show Worked Solution
a.    \(8\) \(=2\times 4\)
    \(=2\times 2\times 2\)

 

b.    \(\sqrt[3]{8}\) \(=\sqrt[3]{2\times 2\times 2}\)
    \(=2\)

Filed Under: Indices Tagged With: num-title-ct-core, smc-4214-30-Roots

Copyright © 2014–2025 SmarterEd.com.au · Log in