The formula for converting degrees Celsius to Fahrenheit is \(F=\dfrac{9C}{5}+32\).
- Find \(F\) is \(C=35\). (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
- Find \(C\) is \(F=68\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
The formula for converting degrees Celsius to Fahrenheit is \(F=\dfrac{9C}{5}+32\).
--- 4 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
a. \(F=95\)
b. \(C=20\)
a. | \(F\) | \(=\dfrac{9C}{5}+32\) |
\(F\) | \(=\dfrac{9\times 35}{5}+32\) | |
\(F\) | \(=\dfrac{315}{5}+32\) | |
\(F\) | \(=63+32=95\) |
b. | \(F\) | \(=\dfrac{9C}{5}+32\) |
\(68\) | \(=\dfrac{9C}{5}+32\) | |
\(\dfrac{9C}{5}\) | \(=68-32\) | |
\(\dfrac{9C}{5}\) | \(=36\) | |
\(9C\) | \(=36\times 5\) | |
\(9C\) | \(=180\) | |
\(C\) | \(=\dfrac{180}{9}=20\) |
Write an algebraic equation for the perimeter of the rectangle below and use it to calculate the value of \(x\) given the perimeter is \(62\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(x=3\)
\(P=2l+2w\)
\(62\) | \(=2(7x+1)+2\times 3x\) |
\(62\) | \(=2\times 7x+2\times 1 +6x\) |
\(62\) | \(=14x+2 +6x\) |
\(20x+2\) | \(=62\) |
\(20x\) | \(=60\) |
\(x\) | \(=3\) |
An isosceles triangle has a perimeter of \(46\) and its base is 12. Find the length of its equal sides. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
\(l=17\)
\(P\) | \(=2l+b\) |
\(46\) | \(=2l+12\) |
\(2l\) | \(=34\) |
\(l\) | \(=\dfrac{34}{2}\) |
\(l\) | \(=17\) |
A rectangle has a length of \(12\) and its area is 96. Find its width. (2 marks)
\(w=8\)
\(A\) | \(=l\times w\) |
\(96\) | \(=12\times w\) |
\(12w\) | \(=96\) |
\(w\) | \(=\dfrac{96}{12}\) |
\(w\) | \(=8\) |
Find the value of \(c\) in the formula \(c=\sqrt{a^2+b^2}\) if \(a=12\) and \(b=5\). (2 marks)
\(c=13\)
\(c\) | \(=\sqrt{a^2+b^2}\) |
\(c\) | \(=\sqrt{12^2+5^2}\) |
\(c\) | \(=\sqrt{144+25}\) |
\(c\) | \(=\sqrt{169}\) |
\(c\) | \(=13\) |
Find the value of \(a\) in the formula \(y=ax^2\) if \(y=32\) and \(x=4\). (2 marks)
\(a=2\)
\(y\) | \(=ax^2\) |
\(32\) | \(=a\times 4^2 \) |
\(16a\) | \(=32\) |
\(a\) | \(=2\) |
Find the value of \(L\) in the formula \(P=2L+2W\) if \(P=42\) and \(W=3\). (2 marks)
\(L=18\)
\(P\) | \(=2L+2W\) |
\(42\) | \(=2L+2\times 3\) |
\(42\) | \(=2L+6\) |
\(2L\) | \(=36\) |
\(L\) | \(=18\) |
Find the value of \(A\) in the formula \(A=\dfrac{h}{2}(a+b)\) if \(h=8\), \(a=7\) and \(b=3\). (2 marks)
\(A=40\)
\(A\) | \(=\dfrac{h}{2}(a+b)\) |
\(A\) | \(=\dfrac{8}{2}(7+3)\) |
\(A\) | \(=4\times 10\) |
\(A\) | \(=40\) |
Find the value of \(y\) in the formula \(y=ax+b\) if \(a=4\), \(x=3\) and \(b=5\). (2 marks)
\(y=17\)
\(y\) | \(=ax+b\) |
\(y\) | \(=4\times 3+5\) |
\(y\) | \(=17\) |
Find the value of \(A\) in the formula \(A=\dfrac{1}{2}bh\) if \(b=32\) and \(h=10\). (2 marks)
\(A=160\)
\(A\) | \(=\dfrac{1}{2}bh\) |
\(A\) | \(=\dfrac{1}{2}\times 32\times 10\) |
\(A\) | \(=160\) |
Find the value of \(a\) in the formula \(2a+3b=c\) if \(b=2\) and \(c=10\). (2 marks)
\(a=2\)
\(2a+3b\) | \(=c\) |
\(2a+3\times 2\) | \(=10\) |
\(2a+6\) | \(=10\) |
\(2a\) | \(=4\) |
\(a\) | \(=2\) |
Find the value of \(h\) in the formula \(V=Ah\) if \(V=112\), and \(A=7\). (2 marks)
\(h=16\)
\(V\) | \(=Ah\) |
\(112\) | \(=7h\) |
\(h\) | \(=\dfrac{112}{7}\) |
\(h\) | \(=16\) |
Find the value of \(t\) in the formula \(v=u+at\) if \(v=10\), \(u=3\) and \(a=2\). (2 marks)
\(t=3.5\)
\(v\) | \(=u+at\) |
\(10\) | \(=3+2t\) |
\(2t\) | \(=10-3\) |
\(2t\) | \(=7\) |
\(t\) | \(=3.5\) |