SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Logarithm, SMB-018

Evaluate  `log_a 6`  given  `log_a 2=0.62`  and  `log_a 24=2.67`.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`1.43`

Show Worked Solution
`log_a 6` `=log_a (24/4)`  
  `=log_a 24-log_b 2^2`  
  `=log_a 24-2log_a 2`  
  `=2.67-2 xx 0.62`  
  `=1.43`  

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Logarithm, SMB-017

Evaluate  `log_b 2`  given  `log_b 6=1.47`  and  `log_b 12=2.18`.  (2 marks)

Show Answers Only

`0.71`

Show Worked Solution
`log_b 2` `=log_b (12/6)`  
  `=log_b 12-log_b 6`  
  `=2.18-1.47`  
  `=0.71`  

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Logarithm, SMB-016

Evaluate  `log_c 12`  given  `log_c 3=1.02`  and  `log_c 4=1.35`.  (2 marks)

Show Answers Only

`2.37`

Show Worked Solution
`log_c 12` `=log_c (3xx4)`  
  `=log_c 3+log_c 4`  
  `=1.02+1.35`  
  `=2.37`  

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Logarithms, SMB-015

Evaluate  `log_x 20`  given  `log_x 2=0.458`  and  `log_x 5=0.726`.  (2 marks)

Show Answers Only

`1.642`

Show Worked Solution
`log_x 20` `=log_x (4xx5)`  
  `=log_x (2^2xx 5)`  
  `=2log_x 2+log_x 5`  
  `=2 xx 0.458 + 0.726`  
  `=1.642`  

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Logarithms, SMB-014

Evaluate  `log_a 15`  given  `log_a 3=0.378`  and  `log_a 5=0.591`.  (2 marks)

Show Answers Only

`0.969`

Show Worked Solution
`log_a 15` `=log_a (3xx5)`  
  `=log_a 3+log_a 5`  
  `=0.378 + 0.591`  
  `=0.969`  

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Logarithms, SMB-013

Evaluate  `log_a 18`  given  `log_a 2=0.431`  and  `log_a 3=0.683`.  (2 marks)

Show Answers Only

`1.797`

Show Worked Solution
`log_a 18` `=log_a (3^2xx2)`  
  `=log_a 3^2+log_a 2`  
  `=2log_a 3+log_a 2`  
  `=2 xx 0.683 + 0.431`  
  `=1.797`  

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Logarithms, SMB-010

Solve the equation  `2 log_2(x + 5)-log_2(x + 9) = 1`.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`x = text{−1}`

Show Worked Solution
`2 log_2(x + 5)-log_2(x + 9)` `= 1`
`log_2(x + 5)^2-log_2(x + 9)` `= 1`
`log_2(((x + 5)^2)/(x + 9))` `= 1`
`((x + 5)^2)/(x + 9)` `= 2`
`x^2 + 10x + 25` `= 2x + 18`
`x^2 + 8x + 7` `= 0`
`(x + 7)(x + 1)` `= 0`

 
`:. x = -1\ \ \ \ (x != text{−7}\ \ text(as)\ \ x > text{−5})`

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules, smc-4243-30-Power rule, smc-4243-60-Quadratic

Logarithms, SMB-005

Solve  `log_3(t)-log_3(t^2-4) = -1`  for  `t`.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`4 `

Show Worked Solution
`log_3(t)-log_3(t^2-4)` `= -1`
`log_3 ({t}/{t^2-4})` `= -1`
`(t)/(t^2-4)` `= (1)/(3)`
`t^2-4` `= 3t`
`t^2-3t – 4` `= 0`
`(t-4)(t+ 1)` `= 0`

 
`:. t=4 \ \ \ (t > 0, \ t!= –1)`

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Logarithms, SMB-004

Solve  `log_2(6-x)-log_2(4-x) = 2`  for `x`, where  `x < 4`.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`10/3`

Show Worked Solution

`text(Simplify using log laws:)`

`log_2((6-x)/(4-x))` `= 2`
`2^2` `= (6-x)/(4-x)`
`16-4x` `= 6-x`
`3x` `= 10`
`:. x` `= 10/3`

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Logarithms, SMB-003

Solve the equation  `2 log_3(5)-log_3 (2) + log_3 (x) = 2`  for  `x.`  (2 marks)

Show Answers Only

`18/25`

Show Worked Solution
`log_3 (5)^2-log_3 (2) + log_3 (x)` `= 2`
`log_3 (25x)-log_3 (2)` `=2`
`log_3 ((25 x)/2)` `= 2`
`(25x)/2` `= 3^2`
`:. x` `= 18/25`

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Logarithms, SMB-002

Solve the equation  `log_3(3x + 5) + log_3(2) = 2`,  for `x`.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`x =-1/6`

Show Worked Solution

`text(Simplify using log laws:)`

`log_3(2(3x + 5))` `=2`
`log_3(6x + 10)` `=2`
`6x +10` `=9`
`6x` `= -1`
`x` `=-1/6`

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Logarithms, SMB-001 MC

It is given that  `log_10 a = log_10 b-log_10 c`, where  `a, b, c > 0.`

Which statement is true?

  1. `a = b-c`
  2. `a = b/c`
  3. `log_10 a = b/c`
  4. `log_10 a = (log_10 b)/(log_10 c)`
Show Answers Only

`B`

Show Worked Solution
Mean mark 51%.
COMMENT: Use of log laws here proved difficult for many students.
`log_10 a` `= log_10 b-log_10 c`
`log_10 a` `= log_10 (b/c)`
`:. a` `= b/c`

 
`=>  B`

Filed Under: Logarithms Tagged With: num-title-ct-patha, smc-4243-10-Product/Quotient rules

Copyright © 2014–2025 SmarterEd.com.au · Log in