Evaluate `log_a 6` given `log_a 2=0.62` and `log_a 24=2.67`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Evaluate `log_a 6` given `log_a 2=0.62` and `log_a 24=2.67`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`1.43`
`log_a 6` | `=log_a (24/4)` | |
`=log_a 24-log_b 2^2` | ||
`=log_a 24-2log_a 2` | ||
`=2.67-2 xx 0.62` | ||
`=1.43` |
Evaluate `log_b 2` given `log_b 6=1.47` and `log_b 12=2.18`. (2 marks)
`0.71`
`log_b 2` | `=log_b (12/6)` | |
`=log_b 12-log_b 6` | ||
`=2.18-1.47` | ||
`=0.71` |
Evaluate `log_c 12` given `log_c 3=1.02` and `log_c 4=1.35`. (2 marks)
`2.37`
`log_c 12` | `=log_c (3xx4)` | |
`=log_c 3+log_c 4` | ||
`=1.02+1.35` | ||
`=2.37` |
Evaluate `log_x 20` given `log_x 2=0.458` and `log_x 5=0.726`. (2 marks)
`1.642`
`log_x 20` | `=log_x (4xx5)` | |
`=log_x (2^2xx 5)` | ||
`=2log_x 2+log_x 5` | ||
`=2 xx 0.458 + 0.726` | ||
`=1.642` |
Evaluate `log_a 15` given `log_a 3=0.378` and `log_a 5=0.591`. (2 marks)
`0.969`
`log_a 15` | `=log_a (3xx5)` | |
`=log_a 3+log_a 5` | ||
`=0.378 + 0.591` | ||
`=0.969` |
Evaluate `log_a 18` given `log_a 2=0.431` and `log_a 3=0.683`. (2 marks)
`1.797`
`log_a 18` | `=log_a (3^2xx2)` | |
`=log_a 3^2+log_a 2` | ||
`=2log_a 3+log_a 2` | ||
`=2 xx 0.683 + 0.431` | ||
`=1.797` |
Solve the equation `2 log_2(x + 5)-log_2(x + 9) = 1`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x = text{−1}`
`2 log_2(x + 5)-log_2(x + 9)` | `= 1` |
`log_2(x + 5)^2-log_2(x + 9)` | `= 1` |
`log_2(((x + 5)^2)/(x + 9))` | `= 1` |
`((x + 5)^2)/(x + 9)` | `= 2` |
`x^2 + 10x + 25` | `= 2x + 18` |
`x^2 + 8x + 7` | `= 0` |
`(x + 7)(x + 1)` | `= 0` |
`:. x = -1\ \ \ \ (x != text{−7}\ \ text(as)\ \ x > text{−5})`
Solve `log_3(t)-log_3(t^2-4) = -1` for `t`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`4 `
`log_3(t)-log_3(t^2-4)` | `= -1` |
`log_3 ({t}/{t^2-4})` | `= -1` |
`(t)/(t^2-4)` | `= (1)/(3)` |
`t^2-4` | `= 3t` |
`t^2-3t – 4` | `= 0` |
`(t-4)(t+ 1)` | `= 0` |
`:. t=4 \ \ \ (t > 0, \ t!= –1)`
Solve `log_2(6-x)-log_2(4-x) = 2` for `x`, where `x < 4`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`10/3`
`text(Simplify using log laws:)`
`log_2((6-x)/(4-x))` | `= 2` |
`2^2` | `= (6-x)/(4-x)` |
`16-4x` | `= 6-x` |
`3x` | `= 10` |
`:. x` | `= 10/3` |
Solve the equation `2 log_3(5)-log_3 (2) + log_3 (x) = 2` for `x.` (2 marks)
`18/25`
`log_3 (5)^2-log_3 (2) + log_3 (x)` | `= 2` |
`log_3 (25x)-log_3 (2)` | `=2` |
`log_3 ((25 x)/2)` | `= 2` |
`(25x)/2` | `= 3^2` |
`:. x` | `= 18/25` |
Solve the equation `log_3(3x + 5) + log_3(2) = 2`, for `x`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`x =-1/6`
`text(Simplify using log laws:)`
`log_3(2(3x + 5))` | `=2` |
`log_3(6x + 10)` | `=2` |
`6x +10` | `=9` |
`6x` | `= -1` |
`x` | `=-1/6` |
It is given that `log_10 a = log_10 b-log_10 c`, where `a, b, c > 0.`
Which statement is true?
`B`
`log_10 a` | `= log_10 b-log_10 c` |
`log_10 a` | `= log_10 (b/c)` |
`:. a` | `= b/c` |
`=> B`