A function has the equation `h(x)=-1-(x-3)^2`.
State the domain and range of `h(x)`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
A function has the equation `h(x)=-1-(x-3)^2`.
State the domain and range of `h(x)`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`text{Domain}\ h(x):\ text{all}\ x`
`text{Range}\ h(x):\ y<=-1`
`h(x)\ text{exists for all}\ x`
`text{Domain}\ h(x):\ text{all}\ x`
`text{Consider the function transformation:}`
`y=x^2\ text{translated 3 units right}\ \ =>\ \ y=(x-3)^2`
`y=(x-3)^2\ text{reflected in the}\ xtext{-axis}\ =>\ \ y=-(x-3)^2`
`y=-(x-3)^2\ text{translated 1 unit down}\ =>\ \ y=-1-(x-3)^2`
`:.\ text{Range}\ h(x): \ y<=-1`
A function has the equation `f(x)=2x^2+1`.
State the range of `f(x)`. (2 marks)
`text{Range}\ f(x): \ y>=1`
`text{Consider the function transformation:}`
`y=2x^2\ text{translated 1 unit up}\ \ =>\ \ y=2x^2+1`
`(x^2>0\ text{for all}\ x)`
`:.\ text{Range}\ f(x): \ y>=1`
A function has the equation `f(x)=4-(x+1)^2`.
State the domain and range of `f(x)`. (3 marks)
`text{Domain}\ f(x): \ text{all}\ x`
`text{Range}\ f(x): \ y<=4`
`f(x)\ text{exists for all}\ x`
`text{Domain}\ f(x): \ text{all}\ x`
`text{Consider the function transformation:}`
`y=x^2\ text{translated 1 unit left}\ =>\ \ y=(x+1)^2`
`y=(x+1)^2\ text{reflected in the}\ xtext{-axis}\ =>\ \ y=-(x+1)^2`
`y=-(x+1)^2\ text{translated 4 units up}\ \ =>\ \ y=4-(x+1)^2`
`:.\ text{Range}\ f(x): \ y<=4`
A function has the equation `g(x)=x^2-1`.
State the range of `g(x)`. (2 marks)
`text{Range}\ g(x): \ y>=-1`
`text{Consider the function transformation:}`
`y=x^2\ text{translated 1 unit down}\ \ =>\ \ y=x^2-1`
`:.\ text{Range}\ g(x): \ y>=-1`
State the domain and range of `y = -sqrt(12-x^2)`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`text(Domain:)\ -sqrt12<=x<= sqrt12`
`text(Range:)\ -sqrt12<=y<= 0`
`y = -sqrt(12-x^2)`
`12-x^2>=0\ \ =>\ \ x^2<=12`
`:.\ text(Domain:)\ -sqrt12<=x<= sqrt12`
`y_max =0`
`y_min = -sqrt12\ \ (text{when}\ x=0)`
`:.\ text(Range:)\ -sqrt12<=y<= 0`
A function has the equation `f(x)=(x-2)^2-5`.
State the range of `f(x)`. (2 marks)
`text{Range}\ f(x): \ y>=-5`
`text{Consider the function transformation:}`
`y=x^2\ \ text{translated 2 units to the right}\ \ =>\ \ y=(x-2)^2`
`y=(x-2)^2\ text{translated 5 units down}\ \ =>\ \ y=(x-2)^2-5`
`:.\ text{Range}\ f(x): \ y>=-5`
`f(x)` is defined by the equation `f(x)=3-x^2`.
--- 2 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. `(sqrt3,0) and (-sqrt3, 0)`
ii. `text{Domain: all}\ x`
`text{Range}\ f(x): \ y<=3`
i. `xtext{-intercepts occur when}\ y=0`
`3-x^2` | `=0` | |
`x^2` | `=3` | |
`x` | `=+-sqrt3` |
`:. xtext{-intercepts at} (sqrt3,0) and (-sqrt3, 0)`
ii. `text{Domain: all}\ x`
`text{Find range}\ f(x):`
`x^2>=0\ text{for all}\ x \ \ => \ \ 3-x^2<=3\ text{for all}\ x`
`:.\ text{Range}\ f(x): \ y<=3`