Evaluate the expression \(x^2+3x-4\) when:
- \(x=1\) (2 marks)
--- 2 WORK AREA LINES (style=lined) ---
- \(x=3\) (2 marks)
--- 2 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Evaluate the expression \(x^2+3x-4\) when:
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
a. \(0\)
b. \(14\)
| a. | \(x^2+3x-4\) | \(=1^2+3\times 1-4 \) |
| \(=1\times 1 +3-4\) | ||
| \(=0\) |
| b. | \(x^2+3x-4\) | \(=3^2+3\times 3-4\) |
| \(=3\times 3 +3\times 3-4\) | ||
| \(=14\) |
Evaluate the expression \(-2x^2\) when:
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
a. \(-2\)
b. \(-8\)
c. \(-\dfrac{1}{2}\)
| a. | \(-2x^2\) | \(=-2\times 1^2\) |
| \(=-2\times 1\times 1\) | ||
| \(=-2\) |
| b. | \(-2x^2\) | \(=-2\times (-2)^2\) |
| \(=-2\times (-2)\times (-2)\) | ||
| \(=-8\) |
| c. | \(-2x^2\) | \(=-2\times \bigg(-\dfrac{1}{2}\bigg)^2\) |
| \(=-2\times \bigg(-\dfrac{1}{2}\bigg) \times \bigg(-\dfrac{1}{2}\bigg)\) | ||
| \(=-2\times\dfrac{1}{4}\) | ||
| \(=-\dfrac{1}{2}\) |
Evaluate the expression \(w^2\) when:
--- 1 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
a. \(16\)
b. \(1\)
c. \(\dfrac{1}{9}\)
| a. | \(w^2\) | \(=4^2\) |
| \(=4\times 4\) | ||
| \(=16\) |
| b. | \(w^2\) | \(=(-1)^2\) |
| \(=(-1)\times (-1)\) | ||
| \(=1\) |
| c. | \(w^2\) | \(=\bigg(\dfrac{1}{3}\bigg)^2\) |
| \(=\dfrac{1}{3}\times \dfrac{1}{3}\) | ||
| \(=\dfrac{1}{9}\) |
Evaluate the expression \(\dfrac{c}{2}-\dfrac{b}{3}+a\) when \(a=-4\), \(b=-3\) and \(c=10\). (2 marks)
\(2\)
| \(\dfrac{c}{2}-\dfrac{b}{3}+a\) | \(=\dfrac{10}{2}-\bigg(\dfrac{-3}{3}\bigg)+(-4)\) |
| \(=5-(-1)-4\) | |
| \(=2\) |
Evaluate the expression \(\dfrac{20}{c}+\dfrac{15}{d}\) when \(c=-2\) and \(d=3\). (2 marks)
\(-5\)
| \(\dfrac{20}{c}+\dfrac{15}{d}\) | \(=\dfrac{20}{-2}+\dfrac{15}{3}\) |
| \(=-10+5\) | |
| \(=-5\) |
Evaluate the expression \(11+a-3b\) when \(a=13\) and \(b=8\). (2 marks)
\(0\)
| \(11+a-3b\) | \(=11+13-3\times 8\) |
| \(=11+13-24\) | |
| \(=0\) |
Evaluate the expression \(-2x+7y\) when \(x=1\) and \(y=-2\). (2 marks)
\(-16\)
| \(-2x+7y\) | \(=-2\times 1+7\times -2\) |
| \(=-2-14\) | |
| \(=-16\) |
Evaluate the expression \(4m-5n\) when \(m=2\) and \(n=4\). (2 marks)
\(-12\)
| \(4m-5n\) | \(=4\times 2-5\times 4\) |
| \(=8-20\) | |
| \(=-12\) |
Evaluate the expression \(3z+11\) when \(z=3\). (1 mark)
\(20\)
| \(3z+11\) | \(=3\times 3+11\) |
| \(=9+11\) | |
| \(=20\) |
Evaluate the expression \(-2-5m\) when \(m=-1\). (1 mark)
\(3\)
| \(-2-5m\) | \(=-2-5\times (-1)\) |
| \(=-2+5\) | |
| \(=3\) |
Evaluate the expression \(10-2y\) when \(y=4\). (1 mark)
\(2\)
| \(10-2y\) | \(=10-2\times 4\) |
| \(=10-8\) | |
| \(=2\) |
When \(\large x\)\(=5\) and \(\large y\)\(=-2\) the value of the expression \(2x+3y\) is:
\(A\)
| \(2x+3y\) | \(=2\times 5+3\times -2\) |
| \(=10+-6\) | |
| \(=4\) |
\(\Rightarrow A\)
When \(\large a\)\(=2\) and \(\large b\)\(=-1\) the value of the expression \(a+b\) is:
\(D\)
| \(a+b\) | \(=2+-1\) |
| \(=1\) |
\(\Rightarrow D\)
When \(x=4\) the value of the expression \(3\times x\) is:
\(C\)
| \(3\times x\) | \(=3\times 4\) |
| \(=12\) |
\(\Rightarrow C\)