SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Algebraic Techniques, SM-Bank 108

Simplify \(\dfrac{3x}{2}\times \dfrac{8}{5x}\ ÷\ \dfrac{4}{x}\)  giving your answer as an algebraic fraction in simplest form.  (2 marks)

Show Answers Only

\(\dfrac{3x}{5}\)

Show Worked Solution
\(\dfrac{3x}{2}\times \dfrac{8}{5x}\ ÷\ \dfrac{4}{x}\) \(=\dfrac{3x}{2}\times \dfrac{8}{5x}\times \dfrac{x}{4}\)
  \(=\dfrac{3x}{5}\)

Filed Under: Algebraic Fractions Tagged With: num-title-ct-core, smc-4697-20-Multiply/Divide

Algebraic Techniques, SM-Bank 107

Simplify the following quotients, giving your answer as an algebraic fraction in simplest form.

  1. \(\dfrac{5}{y}\ ÷\ \dfrac{4}{x}\)  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. \(\dfrac{9a}{7}\ ÷\ \dfrac{c}{b}\)  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. \(\dfrac{r}{3}\ ÷\ \dfrac{5}{4s}\)  (2 marks)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(\dfrac{5x}{4y}\)

b.    \(\dfrac{9ab}{7c}\)

c.    \(\dfrac{4rs}{45}\)

Show Worked Solution
a.    \(\dfrac{5}{y}\ ÷\ \dfrac{4}{x}\) \(=\dfrac{5}{y}\times \dfrac{x}{4}\)
    \(=\dfrac{5x}{4y}\)

 

b.    \(\dfrac{9a}{7}\ ÷\ \dfrac{c}{b}\) \(=\dfrac{9a}{7}\times\dfrac{b}{c}\)
    \(=\dfrac{9ab}{7c}\)

 

c.    \(\dfrac{r}{3}\ ÷\ \dfrac{5}{4s}\) \(=\dfrac{r}{3}\times \dfrac{4s}{5}\)
    \(=\dfrac{4rs}{15}\)

Filed Under: Algebraic Fractions Tagged With: num-title-ct-core, smc-4697-20-Multiply/Divide

Algebraic Techniques, SM-Bank 106

Simplify the following quotients, giving your answer as an algebraic fraction in simplest form.

  1. \(\dfrac{5m}{8}\ ÷\ \dfrac{m}{4}\)  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. \(\dfrac{14x}{3}\ ÷\ \dfrac{7y}{6}\)  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(\dfrac{5}{2}\)

b.    \(\dfrac{8x}{y}\)

Show Worked Solution
a.    \(\dfrac{5m}{8}\ ÷\ \dfrac{m}{4}\) \(=\dfrac{5m}{8}\times \dfrac{4}{m}\)
    \(=\dfrac{20m}{8m}\)
    \(=\dfrac{5}{2}\)

 

b.    \(\dfrac{14x}{3}\ ÷\ \dfrac{7y}{6}\) \(=\dfrac{14x}{3}\times \dfrac{6}{7y}\)
    \(=\dfrac{7x\times 2\times 3\times 2}{7y\times 3}\)
    \(=\dfrac{4x}{y}\)

Filed Under: Algebraic Fractions Tagged With: num-title-ct-core, smc-4697-20-Multiply/Divide

Algebraic Techniques, SM-Bank 105

Simplify the following products, giving your answer as an algebraic fraction in simplest form.

  1. \(\dfrac{2b}{3}\times \dfrac{9c}{5}\)  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  2. \(\dfrac{8x}{5}\times \dfrac{25y}{12}\)  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(\dfrac{6bc}{5}\)

b.    \(\dfrac{10xy}{3}\)

Show Worked Solution
a.    \(\dfrac{2b}{3}\times \dfrac{9c}{5}\) \(=\dfrac{2b\times 9c}{3\times 5}\)
    \(=\dfrac{18bc\ ÷\ 3}{15\ ÷\ 3}\)
    \(=\dfrac{6bc}{5}\)

 

b.    \(\dfrac{8x}{5}\times \dfrac{25y}{12}\) \(=\dfrac{8x\times 25y}{5\times 12}\)
    \(=\dfrac{200xy\ ÷\ 20}{60\ ÷\ 20}\)
    \(=\dfrac{10xy}{3}\)

Filed Under: Algebraic Fractions Tagged With: num-title-ct-core, smc-4697-20-Multiply/Divide

Algebraic Techniques, SM-Bank 104

Simplify the following products, giving your answer as an algebraic fraction in simplest form.

  1. \(\dfrac{a}{2}\times \dfrac{1}{5}\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. \(\dfrac{3x}{5}\times \dfrac{2y}{7}\)  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. \(\dfrac{5r}{9}\times \dfrac{4s}{5}\)  (2 marks)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(\dfrac{a}{10}\)

b.    \(\dfrac{6xy}{35}\)

c.    \(\dfrac{4rs}{9}\)

Show Worked Solution
a.    \(\dfrac{a}{2}\times \dfrac{1}{5}\) \(=\dfrac{a\times 1}{2\times 5}=\dfrac{a}{10}\)

 

b.    \(\dfrac{3x}{5}\times \dfrac{2y}{7}\) \(=\dfrac{3x\times 2y}{5\times 7}=\dfrac{6xy}{35}\)

 

c.    \(\dfrac{5r}{9}\times \dfrac{4s}{5}\) \(=\dfrac{5r\times 4s}{9\times 5}=\dfrac{4rs}{9}\)

Filed Under: Algebraic Fractions Tagged With: num-title-ct-core, smc-4697-20-Multiply/Divide

Copyright © 2014–2025 SmarterEd.com.au · Log in