SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Circles, SM-Bank 053

Town A is 135\(^\circ\) east of Town B along the equator, as shown on the diagram below.

Given the earths' radius is approximately 6400 kilometres, calculate the distance \(d\), between the two towns. Give your answer correct to the nearest whole kilometre.  (2 marks)

NOTE:  \(\text{Arc length}=\dfrac{\theta}{360}\times 2\pi r\)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(15\ 080\ \text{km  (nearest whole kilometre)}\)

Show Worked Solution
\(d\) \(=\dfrac{\theta}{360}\times 2\pi r\)
  \(=\dfrac{135}{360}\times 2\pi \times 6400\)
  \(=15\ 079.6447\dots\)
  \(=15\ 080\ \text{km  (nearest whole kilometre)}\)

 
\(\therefore\ \text{Towns A and B are }15\ 080\ \text{kilometres apart.}\)

Filed Under: Circles Tagged With: num-title-ct-core, smc-4841-20-Sectors

Circles, SM-Bank 052

Calculate the total perimeter of the sector below, giving your answer correct to the nearest whole number.  (2 marks)

NOTE:  \(\text{Perimeter}=2\times \text{radius}+\text{arc length}\)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(1128\ \text{km  (nearest whole number)}\)

Show Worked Solution

\(\text{Perimeter}=2\times \text{radius}+\text{arc length}\)

\(\text{Perimeter}\) \(=2r+\dfrac{\theta}{360}\times 2\pi r\)
  \(=2\times 300+\Bigg(\dfrac{120}{360}\times 2\pi \times 300\Bigg)\)
  \(=1128.3185\dots\)
  \(=1128\ \text{km  (nearest whole number)}\)

Filed Under: Circles Tagged With: num-title-ct-core, smc-4841-20-Sectors

Circles, SM-Bank 051

Calculate the total perimeter of the sector below, giving your answer correct to one decimal place.  (2 marks)

NOTE:  \(\text{Perimeter}=2\times \text{radius}+\text{arc length}\)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(39.0\ \text{cm  (1 d.p.)}\)

Show Worked Solution

\(\text{Perimeter}=2\times \text{radius}+\text{arc length}\)

\(\text{Perimeter}\) \(=2r+\dfrac{\theta}{360}\times 2\pi r\)
  \(=2\times 14+\Bigg(\dfrac{45}{360}\times 2\pi \times 14\Bigg)\)
  \(=38.9955\dots\)
  \(=39.0\ \text{cm  (1 d.p.)}\)

Filed Under: Circles Tagged With: num-title-ct-core, smc-4841-20-Sectors

Circles, SM-Bank 050

Calculate the total perimeter of the sector below, giving your answer correct to one decimal place.  (2 marks)

NOTE:  \(\text{Perimeter}=2\times \text{radius}+\text{arc length}\)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(1523.6\ \text{mm  (1 d.p.)}\)

Show Worked Solution

\(\text{Perimeter}=2\times \text{radius}+\text{arc length}\)

\(\text{Perimeter}\) \(=2r+\dfrac{\theta}{360}\times 2\pi r\)
  \(=2\times 500+\Bigg(\dfrac{60}{360}\times 2\pi \times 500\Bigg)\)
  \(=1523.5987\dots\)
  \(=1523.6\ \text{mm  (1 d.p.)}\)

Filed Under: Circles Tagged With: num-title-ct-core, smc-4841-20-Sectors

Circles, SM-Bank 049

Calculate the total perimeter of the quadrant below, giving your answer correct to one decimal place.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(105.3\ \text{km  (1 d.p.)}\)

Show Worked Solution

\(\text{Perimeter}=2\times \text{radius}+\dfrac{\text{circumference}}{4}\)

\(\text{Perimeter}\) \(=2r+\dfrac{2\pi r}{4}\)
  \(=2\times 29.5+\Bigg(\dfrac{2\pi \times 29.5}{4}\Bigg)\)
  \(=105.3384 \dots\)
  \(=105.3\ \text{km  (1 d.p.)}\)

Filed Under: Circles Tagged With: num-title-ct-core, smc-4841-20-Sectors

Circles, SM-Bank 048

Calculate the total perimeter of the quandrant below, giving your answer as an exact value in terms of \(\large \pi\).  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(14+\dfrac{7\pi}{2}\ \text{m}\)

Show Worked Solution

\(\text{Perimeter}=2\times \text{radius}+\dfrac{\text{circumference}}{4}\)

\(\text{Perimeter}\) \(=2r+\dfrac{2\pi r}{4}\)
  \(=2\times 7+\Bigg(\dfrac{2\pi \times 7}{4}\Bigg)\)
  \(=14+\dfrac{7\pi}{2}\ \text{m}\)

Filed Under: Circles Tagged With: num-title-ct-core, smc-4841-20-Sectors

Circles, SM-Bank 046

Calculate the total perimeter of the sector below, giving your answer as an exact value in terms of \(\large \pi\).  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(100+50\pi\ \text{cm}\)

Show Worked Solution

\(\text{Perimeter}=\text{diameter}+\dfrac{\text{circumference}}{2}\)

\(\text{Perimeter}\) \(=d+\dfrac{\pi d}{2}\)
  \(=100+\Bigg(\dfrac{\pi \times 100}{2}\Bigg)\)
  \(=100+50\pi\ \text{cm}\)

Filed Under: Circles Tagged With: num-title-ct-core, smc-4841-20-Sectors

Circles, SM-Bank 047

Calculate the total perimeter of the sector below, correct to one decimal place.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(17.2\ \text{cm  (1 d.p.)}\)

Show Worked Solution

\(\text{Perimeter}=\text{diameter}+\dfrac{\text{circumference}}{2}\)

\(\text{Perimeter}\) \(=d+\dfrac{\pi d}{2}\)
  \(=6.7+\Bigg(\dfrac{\pi \times 6.7}{2}\Bigg)\)
  \(=17.2243\dots\)
  \(=17.2\ \text{cm  (1 d.p.)}\)

Filed Under: Circles Tagged With: num-title-ct-core, smc-4841-20-Sectors

Circles, SM-Bank 045

Calculate the total perimeter of the sector below, correct to one decimal place.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(442.2\ \text{cm  (1 d.p.)}\)

Show Worked Solution

\(\text{Perimeter}=\text{diameter}+\dfrac{\text{circumference}}{2}\)

\(\text{Perimeter}\) \(=d+\dfrac{\pi d}{2}\)
  \(=172+\Bigg(\dfrac{\pi \times 172}{2}\Bigg)\)
  \(=442.1769\dots\)
  \(=442.2\ \text{cm  (1 d.p.)}\)

Filed Under: Circles Tagged With: num-title-ct-core, smc-4841-20-Sectors

Circles, SM-Bank 044

Calculate the arc length of the sector below, correct to two decimal places.  (2 marks)

\(l=\dfrac{\theta}{360}\times 2\pi r\)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(270.18\ \text{m  (2 d.p.)}\)

Show Worked Solution

\(\text{Diameter}=172 \text{cm}\)

\(\therefore\ \text{Radius}=\dfrac{172}{2}=86 \text{cm}\)

\(\text{Method 1}\)

\(l\) \(=\dfrac{\theta}{360}\times 2\pi r\)
  \(=\dfrac{180}{360}\times 2\pi \times 86\)
  \(=270.1769\dots\)
  \(=270.18\ \text{m  (2 d.p.)}\)

 

\(\text{Method 2}\)

\(l\) \(=\dfrac{1}{2}\times \text{circumference}\)
  \(=\dfrac{1}{2}\times \pi d\)
  \(=\dfrac{1}{2}\times \pi \times 172\)
  \(=270.1769\dots\)
  \(=270.18\ \text{m  (2 d.p.)}\)

Filed Under: Circles Tagged With: num-title-ct-core, smc-4841-20-Sectors

Circles, SM-Bank 043

Use the arc length formula below to calculate the arc length of the sector, correct to two decimal places.  (2 marks)

\(l=\dfrac{\theta}{360}\times 2\pi r\)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(7.54\ \text{m  (2 d.p.)}\)

Show Worked Solution
\(l\) \(=\dfrac{\theta}{360}\times 2\pi r\)
  \(=\dfrac{90}{360}\times 2\pi \times 4.8\)
  \(=7.5398\dots\)
  \(=7.54\ \text{m  (2 d.p.)}\)

Filed Under: Circles Tagged With: num-title-ct-core, smc-4841-20-Sectors

Circles, SM-Bank 042

Use the arc length formula below to calculate the arc length of the sector, correct to one decimal place.  (2 marks)

\(l=\dfrac{\theta}{360}\times 2\pi r\)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(12.4\ \text{mm  (1 d.p.)}\)

Show Worked Solution
\(l\) \(=\dfrac{\theta}{360}\times 2\pi r\)
  \(=\dfrac{45}{360}\times 2\pi \times 15.8\)
  \(=12.4092\dots\)
  \(=12.4\ \text{mm  (1 d.p.)}\)

Filed Under: Circles Tagged With: num-title-ct-core, smc-4841-20-Sectors

Circles, SM-Bank 041

Use the arc length formula below to calculate the arc length of the sector, correct to the nearest whole number.  (2 marks)

\(l=\dfrac{\theta}{360}\times 2\pi r\)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(628\ \text{km  (nearest whole number)}\)

Show Worked Solution
\(l\) \(=\dfrac{\theta}{360}\times 2\pi r\)
  \(=\dfrac{120}{360}\times 2\pi \times 300\)
  \(=628.3185\dots\)
  \(=628\ \text{km  (nearest whole number)}\)

Filed Under: Circles Tagged With: num-title-ct-core, smc-4841-20-Sectors

Circles, SM-Bank 040

Use the arc length formula below to calculate the arc length of the sector, correct to one decimal place.  (2 marks)

\(l=\dfrac{\theta}{360}\times 2\pi r\)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(25.0\ \text{m  (1.d.p.)}\)

Show Worked Solution
\(l\) \(=\dfrac{\theta}{360}\times 2\pi r\)
  \(=\dfrac{135}{360}\times 2\pi \times 10.6\)
  \(=24.9756\dots\)
  \(=25.0\ \text{m  (1.d.p.)}\)

Filed Under: Circles Tagged With: num-title-ct-core, smc-4841-20-Sectors

Circles, SM-Bank 039

Use the arc length formula below to calculate the arc length of the sector, correct to one decimal place.  (2 marks)

\(l=\dfrac{\theta}{360}\times 2\pi r\)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(4.2\ \text{cm  (1.d.p.)}\)

Show Worked Solution
\(l\) \(=\dfrac{\theta}{360}\times 2\pi r\)
  \(=\dfrac{30}{360}\times 2\pi \times 8\)
  \(=4.1887\dots\)
  \(=4.2\ \text{cm  (1.d.p.)}\)

Filed Under: Circles Tagged With: num-title-ct-core, smc-4841-20-Sectors

Copyright © 2014–2025 SmarterEd.com.au · Log in