SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Composite Figures, SM-Bank 018 MC

A pool area is in the shape of a rectangle and a semicircle, as shown below.

A fence is to be constructed around the perimeter of the pool area.

Which expression represents the length of fencing required, in terms of \(\large \pi\)?

  1. \(13+3\pi\)
  2. \(13+6\pi\)
  3. \(20+3\pi\)
  4. \(20+6\pi\)
Show Answers Only

\(C\)

Show Worked Solution
\(\text{Perimeter}\) \(=3\ \text{straight sides}+1\ \text{semicircle}\)
  \(=2\times 7+6+\Bigg(\dfrac{1}{2}\times \pi d\Bigg)\)
  \(=20+\Bigg(\dfrac{1}{2}\times \pi\times 6\Bigg)\)
  \(=20 +3\pi \)

\(\Rightarrow C\)

Filed Under: Composite Figures Tagged With: num-title-ct-core, smc-4842-25-Semi-circles

Composite Figures, SM-Bank 017

Jules cuts away one-half of the circle shown below.

  1. Draw a sketch of Jules' new shape. Include the length of the diameter in your sketch.  (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

  2. What is the perimeter of the new shape, to the nearest metre?  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a. 

b.    \(26\ \text{m  (nearest m)}\)

Show Worked Solution

a.

b.    \(\text{Perimeter}\) \(=\text{diameter}+\dfrac{1}{2}\times \text{circumference}\)
    \(=10 +\Bigg(\dfrac{1}{2}\times \pi d\Bigg)\)
    \(=10 +\Bigg(\dfrac{1}{2}\times \pi\times 10\Bigg)\)
    \(=10+5\pi\)
    \(=25.707\dots\)
    \(=26\ \text{m  (nearest m)}\)

Filed Under: Composite Figures Tagged With: num-title-ct-core, smc-4842-25-Semi-circles

Composite Figures, SM-Bank 016 MC

A one-on-one basketball court is a composite shape made up of a rectangle and a semicircle, as shown below.

A boundary line is painted around the perimeter of the shape.

The total length of the boundary line, in metres, is closest to

  1. \(38.8\)
  2. \(57.7\)
  3. \(66.8\)
  4. \(76.5\)
Show Answers Only

\(A\)

Show Worked Solution
\(\text{Perimeter}\) \(=\Bigg(\dfrac{1}{2}\times \pi\times 12\Bigg) + 4 + 12 + 4\)
  \(=6\pi + 20\)
  \(= 38.849\dots\ \text{m}^2\)

\(\Rightarrow A\)

Filed Under: Composite Figures Tagged With: num-title-ct-core, smc-4842-25-Semi-circles

Composite Figures, SM-Bank 013 MC

Grant cut two semicircles from a rectangle to create Shape 1.

He then joins the semicircles to each end of an identical rectangle to create Shape 2.

Which of the following statements is true about Shape 1 and Shape 2?

  1. They have the same area and the same perimeter.
  2. They have different areas and the same perimeter.
  3. They have the same area and different perimeters.
  4. They have different areas and different perimeters.
Show Answers Only

\(B\)

Show Worked Solution

\(\text{The semi-circles in both shapes have the same diameters}\)

\(\text{but have been turned inward in Shape 2.}\)

\(\therefore\ \text{They have different areas and the same perimeter.}\)

\(\Rightarrow B\)

Filed Under: Composite Figures Tagged With: num-title-ct-core, smc-4842-25-Semi-circles

Composite Figures, SM-Bank 011

Explain using mathematical reasoning why the rule for finding the perimeter of the figure below is \(p=4\pi r\).  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{See worked solution}\)

Show Worked Solution

\(\text{Diameter}=2r\ \longrightarrow\ \text{Radius}=r\)

\(\text{Perimeter}\) \(=4\ \text{semi-circles}=2\ \text{circles}\) 
  \(=2\times 2\pi r\)
  \(=4\pi r\ \text{units}\)

 

Filed Under: Composite Figures Tagged With: num-title-ct-core, smc-4842-25-Semi-circles

Composite Figures, SM-Bank 009

Find the perimeter of the figure below correct to one decimal place.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(36.6\ \text{m  (1 d.p.)}\)

Show Worked Solution
\(\text{Perimeter}\) \(=2\ \text{straight sides}+2\ \text{semi-circles (ie one circle)}\) 
  \(=2\times 12+\pi d\)
  \(=24+\pi \times 4\)
  \(=36.5663\dots\)
  \(=36.6\ \text{m  (1 d.p.)}\)

 

Filed Under: Composite Figures Tagged With: num-title-ct-core, smc-4842-25-Semi-circles

Composite Figures, SM-Bank 008

Find the perimeter of the figure below correct to one decimal place.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(114.2\ \text{m  (1 d.p.)}\)

Show Worked Solution

\(\text{Large semi-circle: }\ d_{1}=40,\ \text{Small semi-circle: }\ d_{2}=20\)

\(\text{Perimeter}\) \(=2\ \text{straight sides}+2\ \text{semi-circles}\)
  \(=2\times 10+\dfrac{\pi d_{1}}{2}+\dfrac{\pi d_{2}}{2}\)
  \(=20+\dfrac{\pi \times 40}{2}+\dfrac{\pi \times 20}{2}\)
  \(=114.2477\dots\)
  \(=114.2\ \text{m  (1 d.p.)}\)

 

Filed Under: Composite Figures Tagged With: num-title-ct-core, smc-4842-25-Semi-circles

Composite Figures, SM-Bank 007

Find the perimeter of the figure below correct to one decimal place.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(21.9\ \text{cm  (1 d.p.)}\)

Show Worked Solution
\(\text{Perimeter}\) \(=2\ \text{straight sides}+1\ \text{semi-circle}\)
  \(=6+8+\dfrac{\pi d}{2}\)
  \(=14+\dfrac{\pi \times 5}{2}\)
  \(=21.8539\dots\)
  \(=21.9\ \text{cm  (1 d.p.)}\)

 

Filed Under: Composite Figures Tagged With: num-title-ct-core, smc-4842-25-Semi-circles

Composite Figures, SM-Bank 006

Find the perimeter of the figure below correct to two decimal places.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(164.25\ \text{cm  (2 d.p.)}\)

Show Worked Solution
\(\text{Perimeter}\) \(=2\ \text{straight sides}+2\ \text{semi-circles (ie 1 circle)}\)
  \(=2\times 35+\pi d\)
  \(=70+\pi \times 30\)
  \(=164.2477\dots\)
  \(=164.25\ \text{cm  (2 d.p.)}\)

 

Filed Under: Composite Figures Tagged With: num-title-ct-core, smc-4842-25-Semi-circles

Composite Figures, SM-Bank 003

Find the perimeter of the figure below correct to one decimal place.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(67.7\ \text{cm  (1 d.p.)}\)

Show Worked Solution
\(\text{Perimeter}\) \(=5\ \text{straight sides}+1\ \text{semi-circle}\)
  \(=2\times 12+20+2\times 4+\Bigg(\dfrac{\pi \times d}{2}\Bigg)\)
  \(=52+\Bigg(\dfrac{\pi \times 10}{2}\Bigg)\)
  \(=67.7079\dots\)
  \(=67.7\ \text{cm  (1 d.p.)}\)

 

Filed Under: Composite Figures Tagged With: num-title-ct-core, smc-4842-25-Semi-circles

Composite Figures, SM-Bank 002

Find the perimeter of the figure below correct to one decimal place.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(51.4\ \text{cm  (1 d.p.)}\)

Show Worked Solution
\(\text{Perimeter}\) \(=2\ \text{straight sides}+2\ \text{semi-circles}\)
  \(=2\times 10+\Bigg(2\times\dfrac{\pi \times d}{2}\Bigg)\)
  \(=20+\pi \times 10\)
  \(=51.4159\dots\)
  \(=51.4\ \text{cm  (1 d.p.)}\)

 

Filed Under: Composite Figures Tagged With: num-title-ct-core, smc-4842-25-Semi-circles

Composite Figures, SM-Bank 001

--- 5 WORK AREA LINES (style=lined) ---

Find the perimeter of the figure below correct to one decimal place.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(88.3\ \text{cm  (1 d.p.)}\)

Show Worked Solution
\(\text{Perimeter}\) \(=3\ \text{straight sides}+\text{semi-circle}\)
  \(=2\times 21 +18+\Bigg(\dfrac{\pi \times d}{2}\Bigg)\)
  \(=60+\Bigg(\dfrac{\pi \times 18}{2}\Bigg)\)
  \(=88.2743\dots\)
  \(=88.3\ \text{cm  (1 d.p.)}\)

 

Filed Under: Composite Figures Tagged With: num-title-ct-core, smc-4842-25-Semi-circles

Copyright © 2014–2025 SmarterEd.com.au · Log in