Using the discriminant, or otherwise, justify why the graph of \(f(x)=-x^2+2 x-2\) lies entirely below the \(x\)-axis. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Using the discriminant, or otherwise, justify why the graph of \(f(x)=-x^2+2 x-2\) lies entirely below the \(x\)-axis. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\Delta=b^2-4 a c=2^2-4(-1)(-2)=-4\)
\(\text{Since \(\ \Delta<0, \ y=-x^2+2 x-2\ \) does not intersect the \(x\)-axis.}\)
\(\text{Since \(\ a=-1<0, f(x)\) is an upside down parabola.}\)
\(\Rightarrow f(x)\ \text{must lie entirely below} \ x\text{-axis.}\)
\(\Delta=b^2-4 a c=2^2-4(-1)(-2)=-4\)
\(\text{Since \(\ \Delta<0, \ y=-x^2+2 x-2\ \) does not intersect the \(x\)-axis.}\)
\(\text{Since \(\ a=-1<0, f(x)\) is an upside down parabola.}\)
\(\Rightarrow f(x)\ \text{must lie entirely below} \ x\text{-axis.}\)
The graph of a quadratic function \(f(x)=a x^2+b x+c\) is drawn below.
Which of the following are true?
\(D\)
\(\text{Quadratic touches } x \text{-axis once only} \ \ \Rightarrow b^2-4 a c=0\ \ \text{(eliminate C)}\)
\(\text{Quadratic is inverted} \Rightarrow a<0 \ \ \text{(eliminate B)}\)
\(\text{If} \ \ c=0, f(x)=a x^2+b x+0=x(a x+b) \Rightarrow \text{cuts twice (Eliminate A)}\)
\(\Rightarrow D\)
Find the value of \(k\) if \(4kx^2-(3-4k) x+k=0\) has one root. (2 marks) --- 7 WORK AREA LINES (style=lined) --- \(k=\dfrac{3}{8}\) \(4kx^2-(3-4k) x+k=0\) \(\text{1 root}\ \Rightarrow \Delta=0\)
\(\Delta\)
\(=b^2-4 a c\)
\(0\)
\(=\left[ -\left( 3-4k \right)\right]^2-4\times 4k \times k\)
\(0\)
\(=9-24k + 16k^2-16k^2\)
\(24k\)
\(=9\)
\(k\)
\(=\dfrac{9}{24}=\dfrac{3}{8}\)
The tangent to the parabola \(y=x^2+2 x-4\) is \(y=px-5\) where \(p>0\).
Find the value of \(p\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(p=4\)
\(\text{Intersection occurs when:}\)
| \(x^2+2x-4\) | \(=px-5\) | |
| \(x^2+(2-p)x+1\) | \(=0\) |
\(\text{Tangent touches once}\ \Rightarrow\ \text{Discriminant}\ \Delta=0\)
| \((2-p)^2-4 \times 1 \times 1\) | \(=0\) | |
| \(4-4p+p^2-4\) | \(=0\) | |
| \(p(p-4)\) | \(=0\) | |
| \(p\) | \(=4\ \ \ (p\gt 0)\) |
Show that the parabola \(2x^2-kx+k-2\) has at least one real root. (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
\(2x^2-kx+k-2=0\)
\(\Delta=b^2-4ac=(-k)^2-4 \times 2(k-2) = k^{2}-8k+16\)
\(\text{Real roots:}\ \ \Delta \geqslant 0\)
| \(k^2-8k+16\) | \(\geqslant 0\) | |
| \((x-4)^2\) | \(\geqslant 0\) |
\(\therefore\ \text{At least one root exists for all}\ k\)
\(2x^2-kx+k-2=0\)
\(\Delta=b^2-4ac=(-k)^2-4 \times 2(k-2) = k^{2}-8k+16\)
\(\text{Real roots:}\ \ \Delta \geqslant 0\)
| \(k^2-8k+16\) | \(\geqslant 0\) | |
| \((x-4)^2\) | \(\geqslant 0\) |
\(\therefore\ \text{At least one root exists for all}\ k\)
Find the values of `k` for which the expression `x^2-3x + (4-2k)` is always positive. (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
`k < 7/8`
`x^2-3x + (4-2k) > 0`
`x^2-3x + (4-2k) = 0\ \ text(is a concave up parabola)`
`=>\ text{Always positive (no roots) if}\ \ Delta < 0`
`b^2-4ac < 0`
| `(−3)^2-4 · 1 · (4-2k)` | `< 0` |
| `9-16 + 8k` | `< 0` |
| `8k` | `< 7` |
| `k` | `< 7/8` |