SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, 2ADV F1 2025 HSC 18

Find the range of \(g(f(x))\),  given  \(f(x)=\dfrac{3}{x-1}\)  and  \(g(x)=x+5\).   (2 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{Range} \ g(f(x)): \text{All} \  y, \  y \neq 5 \ \ \text{or} \ \ \{-\infty<y<5\} \cup\{5<y<\infty\}.\)

Show Worked Solution

\(f(x)=\dfrac{3}{x-1}, \ \ g(x)=x+5\)

\(g(f(x))=\dfrac{3}{x-1}+5 \Rightarrow \ \text{vertical translation +5 of} \ f(x)\)

\(\text{Range} \ f(x):\ \text{All} \ y, \ y \neq 0\)

\(\text{Range} \ g(f(x)): \text{All} \  y, \  y \neq 5 \ \ \text{or} \ \ \{-\infty<y<5\} \cup\{5<y<\infty\}.\)

Filed Under: Composite Functions (Adv-2027), Composite Functions (Y11) Tagged With: Band 4, smc-6216-30-Other Functions, smc-6216-40-Domain/Range, smc-986-30-Other, smc-986-40-Domain/Range

Functions, 2ADV F1 EQ-Bank 1

Given that  \(f(x)=x^2+1\)  and  \(g(x)=x+2\),  determine \(f(g(x))\) and its range.   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(f(g(x))=(x+2)^2+1\)

\(\ \text{Range} \  f(g(x)): \ y \geqslant 1\)

Show Worked Solution

\(f(x)=x^2+1, \quad g(x)=x+2\)

\(f(g(x))=(x+2)^2+1\)

\(\Rightarrow f(g(x)) \ \text{is a concave up parabola, vertex}\ (-2,1)\)

\(\therefore \ \text{Range} \  f(g(x)): \ y \geqslant 1\)

Filed Under: Composite Functions (Adv-2027), Composite Functions (Y11) Tagged With: Band 4, smc-6216-20-Quadratics, smc-6216-40-Domain/Range, smc-986-20-Quadratic, smc-986-40-Domain/Range

Functions, 2ADV F1 EQ-Bank 18

If  \(f(x)=x^2-3\)  and  \(g(x)=\sqrt{x-2}\),

  1. Find  \(f(g(x))\).   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. What is the domain of \(f(g(x))\) ?   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

a.  \(f(g(x))=x-5\)

b.   \(\text{Restriction for}\ \ g(x)\ \Rightarrow \ x-2\geqslant 0 \ \Rightarrow \ x \geqslant 2\)

\(\text{Domain}\ \ f(g(x)):\ x \geqslant 2\)

Show Worked Solution

a.    \(f(g(x))\) \(=(\sqrt{x-2})^2-3\)
    \(=x-2-3\)
    \(=x-5\)

 

b.   \(\text{Restriction for}\ \ g(x)\ \Rightarrow \ x-2\geqslant 0 \ \Rightarrow \ x \geqslant 2\)

\(\text{Domain}\ \ f(g(x)):\ x \geqslant 2\)

Filed Under: Composite Functions (Adv-2027), Composite Functions (Y11) Tagged With: Band 3, Band 4, smc-6216-30-Other Functions, smc-6216-40-Domain/Range, smc-986-30-Other, smc-986-40-Domain/Range

Functions, 2ADV F1 SM-Bank 30

Given  `f(x) = sqrtx`  and  `g(x) = 25 - x^2`

  1. Find  `g(f(x))`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Find the domain and range of  `f(g(x))`.  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `25 – x`
  2. `text(Domain:)\ −5<= x <= 5`

     

    `text(Range:)\ 0<=y<= 5`

Show Worked Solution
i.    `g(f(x))` `= 25 – (f(x))^2`
    `= 25 – (sqrtx)^2`
    `= 25 – x`

 

ii.    `f(g(x))` `= sqrt(g(x))`
    `= sqrt(25 – x^2)`

 
`:.\ text(Domain:)\ −5<= x <= 5`

`:.\ text(Range:)\ 0<=y<= 5`

Filed Under: Composite Functions (Adv-2027), Composite Functions (Y11) Tagged With: Band 3, Band 4, smc-6216-20-Quadratics, smc-6216-30-Other Functions, smc-6216-40-Domain/Range, smc-986-20-Quadratic, smc-986-30-Other, smc-986-40-Domain/Range

Functions, 2ADV F1 SM-Bank 11

Given  `f(x) = sqrt (x^2 - 9)`  and  `g(x) = x + 5`

  1.  Find integers `c` and `d` such that  `f(g(x)) = sqrt {(x + c) (x + d)}`   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2.  State the domain for which  `f(g(x))`  is defined.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `c = 2, d = 8 or c = 8, d = 2`
  2. `x in (– oo, – 8] uu [– 2, oo)`
Show Worked Solution
a.   `f(g(x))` `= sqrt {(x + 5)^2 – 9}`
    `= sqrt (x^2 + 10x + 16)`
    `= sqrt {(x + 2) (x + 8)}`

 
 `:. c = 2, d = 8 or c = 8, d = 2`

 

b.   `text(Find)\ x\ text(such that:)`

♦♦♦ Mean mark 13%.
MARKER’S COMMENT: “Very poorly answered” with a common response of  `-3 <=x<=3`  that ignored the information from part (a).

`(x+2)(x+8) >= 0`
 

 vcaa-2011-meth-4ii

`(x + 2) (x + 8) >= 0\ \ text(when)`

`x <= -8 or x >= -2`
 

`:.\ text(Domain:)\ \ x<=-8\ \ and\ \  x>=-2`

Filed Under: Composite Functions (Adv-2027), Composite Functions (Y11) Tagged With: Band 3, Band 6, smc-6216-30-Other Functions, smc-6216-40-Domain/Range, smc-986-30-Other, smc-986-40-Domain/Range

Functions, 2ADV F1 SM-Bank 7

Let  `f(x) = log_e(x)`  for  `x>0,`  and  `g (x) = x^2 + 1`  for  all `x`.

  1. Find  `h(x)`, where  `h(x) = f (g(x))`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. State the domain and range of  `h(x)`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Show that  `h(x) + h(−x) = f ((g(x))^2 )`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `log_e(x^2 + 1)`
  2. `text(Domain)\ (h):\ text(all)\ x`

     

    `text(Range)\ h(x):\ \  h>=0`

  3. `text(See Worked Solutions)`
Show Worked Solution
i.    `h(x)` `= f(x^2 + 1)`
    `= log_e(x^2 + 1)`

 

ii.   `text(Domain)\ (h) =\ text(Domain)\ (g):\ text(all)\ x`

♦♦ Mean mark part (a)(ii) 30%.
`=> x^2 + 1 >= 1`
`=> log_e(x^2 + 1) >= 0`

 
`:.\ text(Range)\ h(x):\ \  h>=0`

 

MARKER’S COMMENT: Many students were unsure of how to present their working in this question. Note the layout in the solution.
iii.   `text(LHS)` `= h(x) + h(−x)`
    `= log_e(x^2 _ 1) + log_e((−x)^2 + 1)`
    `= log_e(x^2 + 1) + log_e(x^2 + 1)`
    `= 2log_e(x^2 + 1)`

 

`text(RHS)` `= f((x^2 + 1)^2)`
  `= 2log_e(x^2 + 1)`

 
`:. h(x) + h(−x) = f((g(x))^2)\ \ text(… as required)`

Filed Under: Composite Functions (Adv-2027), Composite Functions (Y11) Tagged With: Band 4, Band 5, smc-6216-10-Log/Exp, smc-6216-20-Quadratics, smc-6216-40-Domain/Range, smc-986-10-Log/Exp, smc-986-20-Quadratic, smc-986-40-Domain/Range

Functions, 2ADV F1 SM-Bank 3

Let  `f(x) = sqrt(x + 1)`   for   `x>=0`

  1. State the range of  `f(x)`.   (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Let  `g(x)=x^2+4x+3`,  where  `x<=c`  and  `c<=0`.
  3. Find the largest possible value of `c` such that the range of `g(x)` is a subset of the domain of `f(x)`.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1.   `y>= 1`
  2.  `-3`
Show Worked Solution

i.  `text(Sketch of)\ \ f(x):`
 

`:.\ text(Range:)\ \ y>= 1`

 

ii.  `text(Sketch)\ \ g(x) = (x + 1) (x + 3)`

 

 

 

 

 

 

`text(Domain of)\ \ f(x):\ \ x>=0`

`text(Find domain of)\ g(x)\ text(such that range)\ g(x):\ y>=0`

`text(Graphically, this occurs when)\ \ g(x)\ \ text(has domain:)`

`x <= –3\ \ text(and)\ \ x>=-1`
 

`:. c = -3`

Filed Under: Composite Functions (Adv-2027), Composite Functions (Y11) Tagged With: Band 4, Band 5, smc-6216-30-Other Functions, smc-6216-40-Domain/Range, smc-986-30-Other, smc-986-40-Domain/Range

Copyright © 2014–2025 SmarterEd.com.au · Log in