Find the range of \(g(f(x))\), given \(f(x)=\dfrac{3}{x-1}\) and \(g(x)=x+5\). (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find the range of \(g(f(x))\), given \(f(x)=\dfrac{3}{x-1}\) and \(g(x)=x+5\). (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
\(\text{Range} \ g(f(x)): \text{All} \ y, \ y \neq 5 \ \ \text{or} \ \ \{-\infty<y<5\} \cup\{5<y<\infty\}.\)
\(f(x)=\dfrac{3}{x-1}, \ \ g(x)=x+5\)
\(g(f(x))=\dfrac{3}{x-1}+5 \Rightarrow \ \text{vertical translation +5 of} \ f(x)\)
\(\text{Range} \ f(x):\ \text{All} \ y, \ y \neq 0\)
\(\text{Range} \ g(f(x)): \text{All} \ y, \ y \neq 5 \ \ \text{or} \ \ \{-\infty<y<5\} \cup\{5<y<\infty\}.\)
Given that \(f(x)=x^2+1\) and \(g(x)=x+2\), determine \(f(g(x))\) and its range. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(f(g(x))=(x+2)^2+1\)
\(\ \text{Range} \ f(g(x)): \ y \geqslant 1\)
\(f(x)=x^2+1, \quad g(x)=x+2\)
\(f(g(x))=(x+2)^2+1\)
\(\Rightarrow f(g(x)) \ \text{is a concave up parabola, vertex}\ (-2,1)\)
\(\therefore \ \text{Range} \ f(g(x)): \ y \geqslant 1\)
If \(f(x)=x^2-3\) and \(g(x)=\sqrt{x-2}\), --- 3 WORK AREA LINES (style=lined) --- --- 2 WORK AREA LINES (style=lined) --- a. \(f(g(x))=x-5\) b. \(\text{Restriction for}\ \ g(x)\ \Rightarrow \ x-2\geqslant 0 \ \Rightarrow \ x \geqslant 2\) \(\text{Domain}\ \ f(g(x)):\ x \geqslant 2\) b. \(\text{Restriction for}\ \ g(x)\ \Rightarrow \ x-2\geqslant 0 \ \Rightarrow \ x \geqslant 2\) \(\text{Domain}\ \ f(g(x)):\ x \geqslant 2\)
a.
\(f(g(x))\)
\(=(\sqrt{x-2})^2-3\)
\(=x-2-3\)
\(=x-5\)
Given `f(x) = sqrtx` and `g(x) = 25 - x^2`
--- 2 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
`text(Range:)\ 0<=y<= 5`
| i. | `g(f(x))` | `= 25 – (f(x))^2` |
| `= 25 – (sqrtx)^2` | ||
| `= 25 – x` |
| ii. | `f(g(x))` | `= sqrt(g(x))` |
| `= sqrt(25 – x^2)` |
`:.\ text(Domain:)\ −5<= x <= 5`
`:.\ text(Range:)\ 0<=y<= 5`
Given `f(x) = sqrt (x^2 - 9)` and `g(x) = x + 5`
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
| a. | `f(g(x))` | `= sqrt {(x + 5)^2 – 9}` |
| `= sqrt (x^2 + 10x + 16)` | ||
| `= sqrt {(x + 2) (x + 8)}` |
`:. c = 2, d = 8 or c = 8, d = 2`
b. `text(Find)\ x\ text(such that:)`
`(x+2)(x+8) >= 0`
`(x + 2) (x + 8) >= 0\ \ text(when)`
`x <= -8 or x >= -2`
`:.\ text(Domain:)\ \ x<=-8\ \ and\ \ x>=-2`
Let `f(x) = log_e(x)` for `x>0,` and `g (x) = x^2 + 1` for all `x`.
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
`text(Range)\ h(x):\ \ h>=0`
| i. | `h(x)` | `= f(x^2 + 1)` |
| `= log_e(x^2 + 1)` |
ii. `text(Domain)\ (h) =\ text(Domain)\ (g):\ text(all)\ x`
| `=> x^2 + 1 >= 1` |
| `=> log_e(x^2 + 1) >= 0` |
`:.\ text(Range)\ h(x):\ \ h>=0`
| iii. | `text(LHS)` | `= h(x) + h(−x)` |
| `= log_e(x^2 _ 1) + log_e((−x)^2 + 1)` | ||
| `= log_e(x^2 + 1) + log_e(x^2 + 1)` | ||
| `= 2log_e(x^2 + 1)` |
| `text(RHS)` | `= f((x^2 + 1)^2)` |
| `= 2log_e(x^2 + 1)` |
`:. h(x) + h(−x) = f((g(x))^2)\ \ text(… as required)`
Let `f(x) = sqrt(x + 1)` for `x>=0`
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. `text(Sketch of)\ \ f(x):`
`:.\ text(Range:)\ \ y>= 1`
ii. `text(Sketch)\ \ g(x) = (x + 1) (x + 3)`
`text(Domain of)\ \ f(x):\ \ x>=0`
`text(Find domain of)\ g(x)\ text(such that range)\ g(x):\ y>=0`
`text(Graphically, this occurs when)\ \ g(x)\ \ text(has domain:)`
`x <= –3\ \ text(and)\ \ x>=-1`
`:. c = -3`