SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, 2ADV EQ-Bank 6

  1. Identify where the graph  \(f(x)=\dfrac{\abs{x}}{x}\)  is not continuous.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Sketch the graph of \(f(x)\).   (2 marks)

    --- 6 WORK AREA LINES (style=blank) ---

Show Answers Only

a.    \(\text {Denominator} \neq 0\)

\(f(x)\ \text{is not continuous when} \ \ x=0\)
 

b.    \(\text{If} \ \ x>0 \ \Rightarrow \ f(x)=\dfrac{x}{x}=1\)

\(\text{If} \ \ x<0 \ \Rightarrow \ f(x)=-\dfrac{x}{x}=-1\)
 

Show Worked Solution

a.    \(\text {Denominator} \neq 0\)

\(f(x)\ \text{is not continuous when} \ \ x=0\)
 

b.    \(\text{If} \ \ x>0 \ \Rightarrow \ f(x)=\dfrac{x}{x}=1\)

\(\text{If} \ \ x<0 \ \Rightarrow \ f(x)=-\dfrac{x}{x}=-1\)
 

Filed Under: Piecewise Functions (Adv-2027) Tagged With: Band 3, Band 4, smc-6217-10-Sketch graph, smc-6217-40-Continuity

Functions, 2ADV EQ-Bank 5

  1. Identify where the graph  \(f(x)=\dfrac{x^2-1}{x-1}\)  is not continuous.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Sketch the graph of \(f(x)\).   (2 marks)

    --- 6 WORK AREA LINES (style=blank) ---

Show Answers Only

a.    \(f(x)=\dfrac{x^2-1}{x-1}=\dfrac{(x+1)(x-1)}{(x-1)}=x+1\)

\(\text{Since denominator} \neq 0\)

\(f(x) \ \ \text{is not continuous when} \ \ x=1.\)
 

b.
       

Show Worked Solution

a.    \(f(x)=\dfrac{x^2-1}{x-1}=\dfrac{(x+1)(x-1)}{(x-1)}=x+1\)

\(\text{Since denominator} \neq 0\)

\(f(x) \ \ \text{is not continuous when} \ \ x=1.\)
 

b.
       

Filed Under: Piecewise Functions (Adv-2027) Tagged With: Band 3, Band 4, smc-6217-10-Sketch graph, smc-6217-40-Continuity, syllabus-2027

Functions, 2ADV EQ-Bank 4

Consider the function  \(y=f(x)\)  where

\(f(x)= \begin{cases}x^2+6, & \text { for } x \leqslant 0 \\ 6, & \text { for } 0<x \leqslant 3 \\ 2^x, & \text { for } x>3\end{cases}\)

  1. Sketch  \(y=f(x)\)   (3 marks)

    --- 12 WORK AREA LINES (style=lined) ---

  2. For what value of \(x\) is  \(y=f(x)\)  NOT continuous?   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.
   

b.    \(f(x)\ \ \text {is NOT continuous at}\ \  x=3.\)

Show Worked Solution

a.
   

b.    \(f(x)\ \ \text {is NOT continuous at}\ \  x=3.\)

Filed Under: Piecewise Functions (Adv-2027) Tagged With: Band 3, Band 4, smc-6217-10-Sketch graph, smc-6217-40-Continuity, syllabus-2027

Copyright © 2014–2025 SmarterEd.com.au · Log in