Simplify \(\left(2 k^3\right)^2\). (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Simplify \(\left(2 k^3\right)^2\). (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
\(4 k^6\)
| \(\left(2 k^3\right)^2\) | \(=2^2 \times\left(k^3\right)^2\) |
| \(=4 k^6\) |
Given \(m\) and \(n\) are positive constants, which expression is equal to
\(\log _m x^5=n\)
\(\Rightarrow B\)
\(\log _m x^5=n\)
\(\text{By definition:}\)
| \(x^5\) | \(=m^n\) |
| \(x\) | \(=\left(m^n\right)^{\frac{1}{5}}\) |
| \(=m^{\frac{n}{5}}\) |
\(\Rightarrow B\)
Show \(f(x)=\dfrac{1}{2}-\dfrac{1}{2^x+1}\) is an odd function. (3 marks) --- 10 WORK AREA LINES (style=lined) --- \(\text{Odd}\ \ \Rightarrow \ \ f(-x)=-f(x)\) \(\begin{aligned} \(\text{Odd}\ \ \Rightarrow \ \ f(-x)=-f(x)\) \(\begin{aligned}
f(x) & =\dfrac{1}{2}-\dfrac{1}{2^x+1} \\
f(-x) & =\dfrac{1}{2}-\dfrac{1}{2^{-x}+1} \times \dfrac{2^x}{2^x} \\
& =\dfrac{1}{2}-\dfrac{2^x}{1+2^x} \\
& =\dfrac{1}{2}-\dfrac{2^x+1-1}{2^x+1} \\
& =\dfrac{1}{2}-1+\dfrac{1}{2^x+1} \\
& =-\dfrac{1}{2}+\dfrac{1}{2^x+1} \\
& =-f(x)
\end{aligned}\)
\(\therefore f(x) \text { is odd.}\)
f(x) & =\dfrac{1}{2}-\dfrac{1}{2^x+1} \\
f(-x) & =\dfrac{1}{2}-\dfrac{1}{2^{-x}+1} \times \dfrac{2^x}{2^x} \\
& =\dfrac{1}{2}-\dfrac{2^x}{1+2^x} \\
& =\dfrac{1}{2}-\dfrac{2^x+1-1}{2^x+1} \\
& =\dfrac{1}{2}-1+\dfrac{1}{2^x+1} \\
& =-\dfrac{1}{2}+\dfrac{1}{2^x+1} \\
& =-f(x)
\end{aligned}\)
\(\therefore f(x) \text { is odd.}\)
Solve the equation \(8^{n+3}=\dfrac{1}{2}\) (2 marks) --- 5 WORK AREA LINES (style=lined) --- \(n=-\dfrac{10}{3} \)
\(8^{n+3}\)
\(=\dfrac{1}{2}\)
\(2^{3(n+3)}\)
\(=2^{-1}\)
\(3n+9\)
\(=-1\)
\(3n\)
\(=-10\)
\(n\)
\(=-\dfrac{10}{3} \)
Solve \(e^{2x}-12=4e^{x}\) for \(x\ \in\ R\). (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(x=\log_{e}6\)
| \(e^{2x}-12\) | \(=4e^{x}\) |
| \(e^{2x}-4e^{x}-12\) | \(=0\) |
\(\text{Let}\ \ u=e^{x}:\)
| \(u^2-4u-12\) | \(=0\) |
| \((u-6)(u+2)\) | \(=0\) |
\(\Rightarrow u=6\ \ \ \text{or}\ -2\)
| \(\therefore e^{x}\) | \(=6\ \ \ \ \ \ \ \ \ \ \text{or}\ \ \ \ \ \ e^{x}=-2\ \text{(no solution)}\) | |
| \(x\) | \(=\log_{e}6 \) |
Find `x` given `100^(x-2) = 1000^x`. (2 marks)
`-4`
| `100^(x-2)` | `= 1000^x` |
| `(10^2)^(x-2)` | `= (10^3)^x` |
| `10^(2x-4)` | `= (10)^(3x)` |
| `2x-4` | `=3x` |
| `:. x` | `= -4` |
--- 1 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `1/(root3(7+pi)) = (7+pi)^(-1/3)`
| ii. | `1/(root3(7+pi))` | `=0.4619…` |
| `=0.462\ \ text{(to 3 sig. fig.)}` |
Solve `e^(2 ln x) = x + 6` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`x = 3 or -2`
| `e^(2 ln x)` | `= x + 6` |
| `ln e^(2 ln x)` | `= ln (x + 6)` |
| `2 ln x` | `= ln (x + 6)` |
| `ln x^2` | `= ln (x + 6)` |
| `x^2` | `= x + 6` |
| `x^2 – x – 6` | `= 0` |
| `(x – 3) (x + 2)` | `= 0` |
`:. x = 3 \ \ (x>0)`
What is the value of `p` so that `(a^2a^(-3))/sqrt a = a^p`?
`B`
| `(a^2 a^(-3))/a^(1/2)` | `= a^(-1) xx a^(-1/2)` |
| `= a^(-3/2)` |
`=> B`
Solve the equation `3^(-4x) = 9^(6-x)` for `x.` (2 marks)
`-6`
| `3^(-4x)` | `= (3^2)^(6-x)` |
| `3^(-4x)` | `=3^(12-2x)` |
| ` -4x` | `= 12-2x` |
| `2x` | `=-12` |
| `:. x` | `=-6` |
Solve the equation `2^(3x-3) = 8^(2-x)` for `x`. (2 marks)
`3/2`
| `2^(3x-3)` | `= 2^(3(2-x))` |
| `3x-3` | `= 6-3x` |
| `6x` | `= 9` |
| `:. x` | `= 3/2` |
Solve the equation `e^(4x) - 5e^(2x) + 4 = 0` for `x`
`C`
`e^(4x) – 5e^(2x) + 4 = 0`
`text(Let)\ \ X=e^(2x)`
| `X^2-5X+4` | `=0` |
| `(X-4)(X-1)` | `=0` |
| `X` | `=4 or 1` |
| `:.e^(2x)` | `=4` | `e^(2x)` | `=1` |
| `2x` | `=log_e 4` | `x` | `=0` |
| `x` | `=(2log_e 2)/2` | ||
| `=log_e 2` |
`=> C`
Solve the following equation for `x`:
`e^(2x) + 3e^x − 10 = 0`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`x = ln 2`
| `e^(2x) + 3e^x − 10` | `= 0` |
| `:. (e^x)^2 + 3e^x − 10` | `= 0` |
`text(Let)\ \ X = e^x,`
| `:. X^2 + 3X – 10` | `= 0` |
| `(X + 5)(X − 2)` | `= 0` |
| `:. X =2 or -5` | |
| `text(If)\ \ X` | `=2` |
| `e^x` | `=2` |
| `ln e^x` | `=ln 2` |
| `x` | `=ln 2` |
| `text(If)\ \ X` | `=-5` |
| `e^x` | `=-5\ \ \ text{(no solution)}` |
`:. x=ln 2`
Solve the following equation for `x`:
`2e^(2x)-e^x = 0`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`x = ln\ 1/2`
`text(Solution 1)`
`2e^(2x)-e^x = 0`
`text(Let)\ \ X = e^x:`
| `2X^2-X` | `= 0` |
| `X (2X-1)` | `= 0` |
`X = 0 or 1/2`
`text(When)\ e^x = 0\ =>\ text(no solution)`
`text(When)\ e^x = 1/2`
| `ln e^x` | `= ln\ 1/2` |
| `:. x` | `= ln\ 1/2` |
`text(Solution 2)`
| `2e^(2x)-e^x` | `=0` |
| `2e^(2x)` | `=e^x` |
| `ln 2e^(2x)` | `=ln e^x` |
| `ln 2 +ln e^(2x)` | `=x` |
| `ln 2 + 2x` | `=x` |
| `x` | `=-ln2` |
| `=ln\ 1/2` |
Evaluate `e^(−0.5)` correct to three decimal places. (2 marks)
`0.607\ \ text{(to 3 d.p.)}`
| `e^(−0.5)` | `= 0.6065…` |
| `= 0.607\ \ text{(to 3 d.p.)}` |
Let `f(x)=1+e^x`.
Show that `f(x)xxf(–x)=f(x)+f(–x)`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`text{Proof (See Worked Solutions).}`
`f(x)xxf(–x)`
`=(1+e^x)(1+e^-x)`
`=1+e^-x+e^x+e^xe^-x`
`=e^x+e^-x+2`
`f(x)+f(–x)`
`=1+e^x+1+e^-x`
`=e^x+e^-x+2`
`=f(x)xxf(–x)\ \ …\ text(as required)`
Solve `2^(2x+1)=32`. (2 marks)
`x=2`
| `2^(2x+1)` | `=32` |
| `2^(2x+1)` | `=2^5` |
| `2x+1` | `=5` |
| `:. x` | `=2` |