SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

L&E, 2ADV EQ-Bank 07

Simplify  \(\left(2 k^3\right)^2\).   (1 mark)

--- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

\(4 k^6\)

Show Worked Solution
\(\left(2 k^3\right)^2\) \(=2^2 \times\left(k^3\right)^2\)
  \(=4 k^6\)

Filed Under: Log/Index Laws and Equations (Adv-2027) Tagged With: Band 2, smc-6455-50-Exponential Equations

L&E, 2ADV E1 SM-Bank 3 MC

Given \(m\) and \(n\) are positive constants, which expression is equal to

\(\log _m x^5=n\)

  1. \(x=n^{\frac{m}{5}}\)
  2. \(x=m^{\frac{n}{5}}\)
  3. \(x=\dfrac{n^m}{5}\)
  4. \(x=\dfrac{m^n}{5}\)
Show Answers Only

\(\Rightarrow B\)

Show Worked Solution

\(\log _m x^5=n\)

\(\text{By definition:}\)

\(x^5\) \(=m^n\)
\(x\) \(=\left(m^n\right)^{\frac{1}{5}}\)
  \(=m^{\frac{n}{5}}\)

 
\(\Rightarrow B\)

Filed Under: Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11) Tagged With: Band 4, smc-6455-50-Exponential Equations, smc-963-50-Exponential Equation

L&E, 2ADV E1 EQ-Bank 2

Show  \(f(x)=\dfrac{1}{2}-\dfrac{1}{2^x+1}\)  is an odd function.  (3 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{Odd}\ \ \Rightarrow \  \ f(-x)=-f(x)\)

\(\begin{aligned}
f(x) & =\dfrac{1}{2}-\dfrac{1}{2^x+1} \\
f(-x) & =\dfrac{1}{2}-\dfrac{1}{2^{-x}+1} \times \dfrac{2^x}{2^x} \\
& =\dfrac{1}{2}-\dfrac{2^x}{1+2^x} \\
& =\dfrac{1}{2}-\dfrac{2^x+1-1}{2^x+1} \\
& =\dfrac{1}{2}-1+\dfrac{1}{2^x+1} \\
& =-\dfrac{1}{2}+\dfrac{1}{2^x+1} \\
& =-f(x)
\end{aligned}\)

 
\(\therefore f(x) \text { is odd.}\)

Show Worked Solution

\(\text{Odd}\ \ \Rightarrow \  \ f(-x)=-f(x)\)

\(\begin{aligned}
f(x) & =\dfrac{1}{2}-\dfrac{1}{2^x+1} \\
f(-x) & =\dfrac{1}{2}-\dfrac{1}{2^{-x}+1} \times \dfrac{2^x}{2^x} \\
& =\dfrac{1}{2}-\dfrac{2^x}{1+2^x} \\
& =\dfrac{1}{2}-\dfrac{2^x+1-1}{2^x+1} \\
& =\dfrac{1}{2}-1+\dfrac{1}{2^x+1} \\
& =-\dfrac{1}{2}+\dfrac{1}{2^x+1} \\
& =-f(x)
\end{aligned}\)

 
\(\therefore f(x) \text { is odd.}\)

Filed Under: Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11) Tagged With: Band 5, smc-6455-50-Exponential Equations, smc-6455-70-Odd/Even Functions, smc-963-50-Exponential Equation, smc-963-70-Odd/even functions

L&E, 2ADV E1 EQ-Bank 5

Solve the equation  \(8^{n+3}=\dfrac{1}{2}\)   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(n=-\dfrac{10}{3} \)

Show Worked Solution

\(8^{n+3}\) \(=\dfrac{1}{2}\)  
\(2^{3(n+3)}\) \(=2^{-1}\)  
\(3n+9\) \(=-1\)  
\(3n\) \(=-10\)  
\(n\) \(=-\dfrac{10}{3} \)  

Filed Under: Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11) Tagged With: Band 4, smc-6455-50-Exponential Equations, smc-963-50-Exponential Equation

L&E, 2ADV E1 2023 MET1 2

Solve  \(e^{2x}-12=4e^{x}\)  for  \(x\ \in\ R\).   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(x=\log_{e}6\)

Show Worked Solution
\(e^{2x}-12\) \(=4e^{x}\)
\(e^{2x}-4e^{x}-12\) \(=0\)

 
\(\text{Let}\ \ u=e^{x}:\)

\(u^2-4u-12\) \(=0\)
\((u-6)(u+2)\) \(=0\)
 

\(\Rightarrow u=6\ \ \ \text{or}\ -2\)

\(\therefore e^{x}\) \(=6\ \ \ \ \ \ \ \ \ \ \text{or}\ \ \ \ \ \ e^{x}=-2\ \text{(no solution)}\)  
\(x\) \(=\log_{e}6 \)  

Filed Under: Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11) Tagged With: Band 4, smc-6455-50-Exponential Equations, smc-963-50-Exponential Equation

L&E, 2ADV E1 SM-Bank 13

Find `x` given  `100^(x-2) = 1000^x`.  (2 marks)

Show Answers Only

`-4`

Show Worked Solution
`100^(x-2)` `= 1000^x`
`(10^2)^(x-2)` `= (10^3)^x`
`10^(2x-4)` `= (10)^(3x)`
`2x-4` `=3x`
`:. x` `= -4`

Filed Under: Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11) Tagged With: Band 4, smc-6455-20-Logs - Power Rule, smc-6455-50-Exponential Equations, smc-963-20-Log - power rule, smc-963-50-Exponential Equation

Functions, 2ADV F1 SM-Bank 53

  1. If  `1/(root3(7+pi)) = (7+pi)^x`, find  `x`.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. Calculate the value of  `1/(root3(7+pi))`  to 3 significant figures.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `-1/3`
  2. `0.462`
Show Worked Solution

i.    `1/(root3(7+pi)) = (7+pi)^(-1/3)`

ii.     `1/(root3(7+pi))` `=0.4619…`
    `=0.462\ \ text{(to 3 sig. fig.)}`

Filed Under: Algebraic Techniques (Adv-2027), Algebraic Techniques (Y11), Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11) Tagged With: Band 2, Band 3, smc-6213-60-Rounding, smc-6455-50-Exponential Equations, smc-963-50-Exponential Equation, smc-983-10-Rounding

L&E, 2ADV E1 2019 HSC 15a

Solve  `e^(2 ln x) = x + 6`   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`x = 3 or -2`

Show Worked Solution

♦ Mean mark 47%.

`e^(2 ln x)` `= x + 6`
`ln e^(2 ln x)` `= ln (x + 6)`
`2 ln x` `= ln (x + 6)`
`ln x^2` `= ln (x + 6)`
`x^2` `= x + 6`
`x^2 – x – 6` `= 0`
`(x – 3) (x + 2)` `= 0`

 
`:. x = 3 \ \ (x>0)`

Filed Under: Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11) Tagged With: Band 5, smc-6455-40-Logs - Other, smc-6455-50-Exponential Equations, smc-6455-60-Quadratic Equations, smc-963-40-Log - Other, smc-963-50-Exponential Equation, smc-963-60-Quadratic Equations

L&E, 2ADV E1 2019 HSC 3 MC

What is the value of  `p` so that  `(a^2a^(-3))/sqrt a = a^p`?

  1. `-3`
  2. `-3/2`
  3. `-1/2`
  4. `12`
Show Answers Only

`B`

Show Worked Solution
`(a^2 a^(-3))/a^(1/2)` `= a^(-1) xx a^(-1/2)`
  `= a^(-3/2)`

 
`=>  B`

Filed Under: Indices, Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11) Tagged With: Band 4, num-title-ct-pathc, num-title-qs-hsc, smc-4228-60-Fractional indices, smc-6455-50-Exponential Equations, smc-963-50-Exponential Equation

L&E, 2ADV E1 SM-Bank 8

Solve the equation  `3^(-4x) = 9^(6-x)`  for  `x.`  (2 marks)

Show Answers Only

`-6`

Show Worked Solution
`3^(-4x)` `= (3^2)^(6-x)`
`3^(-4x)` `=3^(12-2x)`
` -4x` `= 12-2x`
 `2x` `=-12`
 `:. x` `=-6`

Filed Under: Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11), Log/Index laws and Other Equations Tagged With: Band 3, smc-6455-50-Exponential Equations, smc-963-50-Exponential Equation

L&E, 2ADV E1 SM-Bank 10

Solve the equation  `2^(3x-3) = 8^(2-x)`  for  `x`.  (2 marks)

Show Answers Only

`3/2`

Show Worked Solution
`2^(3x-3)` `= 2^(3(2-x))`
`3x-3` `= 6-3x`
`6x` `= 9`
`:. x` `= 3/2`

Filed Under: Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11), Log/Index laws and Other Equations Tagged With: Band 4, smc-6455-50-Exponential Equations, smc-963-50-Exponential Equation

L&E, 2ADV E1 SM-Bank 11 MC

Solve the equation  `e^(4x) - 5e^(2x) + 4 = 0`  for `x`

  1. `x= 1, 4`
  2. `x= – 4, – 1`
  3. `x= 0, log_e 2`
  4. `x= – log_e 2, 0, log_e 2 `
Show Answers Only

`C`

Show Worked Solution

`e^(4x) – 5e^(2x) + 4 = 0`

`text(Let)\ \ X=e^(2x)`

`X^2-5X+4` `=0`
`(X-4)(X-1)` `=0`
`X` `=4 or 1`

 

`:.e^(2x)` `=4` `e^(2x)` `=1`
`2x` `=log_e 4` `x` `=0`
`x` `=(2log_e 2)/2`    
  `=log_e 2`    

`=> C`

Filed Under: Equations reducible to quadratics, Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11), Log/Index laws and Other Equations Tagged With: Band 4, smc-6455-50-Exponential Equations, smc-6455-60-Quadratic Equations, smc-963-50-Exponential Equation, smc-963-60-Quadratic Equations

L&E, 2ADV E1 2004 HSC 6a

Solve the following equation for `x`:

`e^(2x) + 3e^x − 10 = 0`.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`x = ln 2`

Show Worked Solution
`e^(2x) + 3e^x − 10` `= 0`
`:. (e^x)^2 + 3e^x − 10` `= 0`

 
`text(Let)\ \ X = e^x,`

`:. X^2 + 3X – 10` `= 0`
`(X + 5)(X − 2)` `= 0`
`:. X =2 or -5`

 

`text(If)\ \ X` `=2`
`e^x` `=2`
`ln e^x` `=ln 2`
`x` `=ln 2`
`text(If)\ \ X` `=-5`
`e^x` `=-5\ \ \ text{(no solution)}`

 
 `:. x=ln 2`

Filed Under: Equations reducible to quadratics, Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11), Log/Index laws and Other Equations Tagged With: Band 4, smc-6455-50-Exponential Equations, smc-6455-60-Quadratic Equations, smc-963-50-Exponential Equation, smc-963-60-Quadratic Equations

L&E, 2ADV E1 2007 HSC 6a

Solve the following equation for `x`:

`2e^(2x)-e^x = 0`.   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`x = ln\ 1/2`

Show Worked Solution

`text(Solution 1)`

`2e^(2x)-e^x = 0`

`text(Let)\ \ X = e^x:`

`2X^2-X` `= 0`
`X (2X-1)` `= 0`

 
`X = 0 or 1/2`

 
`text(When)\ e^x = 0\  =>\ text(no solution)`

`text(When)\ e^x = 1/2`

`ln e^x` `= ln\ 1/2`
`:. x` `= ln\ 1/2`

 

`text(Solution 2)`

`2e^(2x)-e^x` `=0`
`2e^(2x)` `=e^x`
`ln 2e^(2x)` `=ln e^x`
`ln 2 +ln e^(2x)` `=x`
`ln 2 + 2x` `=x`
`x` `=-ln2`
  `=ln\ 1/2`

Filed Under: Equations reducible to quadratics, Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11), Log/Index laws and Other Equations Tagged With: Band 4, smc-6455-50-Exponential Equations, smc-6455-60-Quadratic Equations, smc-963-50-Exponential Equation, smc-963-60-Quadratic Equations

L&E, 2ADV E1 2015 HSC 8 MC

The diagram shows the graph of  `y = e^x (1 + x).`
 

How many solutions are there to the equation  `e^x (1 + x) = 1-x^2`?

  1. `0`
  2. `1`
  3. `2`
  4. `3`
Show Answers Only

`C`

Show Worked Solution

`text(The graphs intersect at 2 points)`

`:. e^x(1 + x) = 1-x^2\ text(has 2 solutions)`

`=> C`

Filed Under: Graphs and Applications (Adv-2027), Graphs and Applications (Y11), Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11), Log/Index laws and Other Equations Tagged With: Band 4, smc-6455-50-Exponential Equations, smc-6456-20-Exponential Graphs, smc-963-50-Exponential Equation, smc-966-10-Exponential graphs

L&E, 2ADV E1 2006 HSC 1a

Evaluate  `e^(−0.5)`  correct to three decimal places.  (2 marks)

Show Answers Only

`0.607\ \ text{(to 3 d.p.)}`

Show Worked Solution
`e^(−0.5)` `= 0.6065…`
  `= 0.607\ \ text{(to 3 d.p.)}`

Filed Under: Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11), Log/Index laws and Other Equations, Surds and Rounding Tagged With: Band 2, smc-6455-50-Exponential Equations, smc-963-50-Exponential Equation

L&E, 2ADV E1 2010 HSC 4d

Let  `f(x)=1+e^x`.

Show that  `f(x)xxf(–x)=f(x)+f(–x)`.   (2 marks) 

--- 5 WORK AREA LINES (style=lined) ---

Show Answer Only

`text{Proof (See Worked Solutions).}`

 

Show Worked Solutions

`f(x)xxf(–x)`

`=(1+e^x)(1+e^-x)`

MARKER’S COMMENT: A common error in this question was not to realise that `e^xe^-x=e^0=1`.

`=1+e^-x+e^x+e^xe^-x`

`=e^x+e^-x+2`

 

`f(x)+f(–x)`

`=1+e^x+1+e^-x`

`=e^x+e^-x+2`

`=f(x)xxf(–x)\ \ …\ text(as required)`

 

Filed Under: Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11), Log/Index laws and Other Equations Tagged With: Band 4, smc-6455-50-Exponential Equations, smc-963-50-Exponential Equation

L&E, 2ADV E1 2011 HSC 1c

Solve   `2^(2x+1)=32`.    (2 marks) 

Show Answer Only

`x=2`

Show Worked Solutions
MARKER’S COMMENT: Many students correctly solved this by taking the logarithms of both sides.
`2^(2x+1)` `=32`
`2^(2x+1)` `=2^5`
`2x+1` `=5`
`:. x` `=2`

Filed Under: Indices, Log/Index Laws and Equations (Adv-2027), Log/Index Laws and Equations (Y11), Log/Index laws and Other Equations Tagged With: Band 3, num-title-ct-pathb, num-title-qs-hsc, smc-4228-15-Indices unknown, smc-6455-50-Exponential Equations, smc-963-50-Exponential Equation

Copyright © 2014–2025 SmarterEd.com.au · Log in