SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C1 EO-Bank 11 MC v1

Two functions, \(f\) and \(g\), are continuous and differentiable for all  \(x\in R\). It is given that  \(f(-1)=7,\ g(-1)=5\)  and  \(f^{′}(-1)=-4,\ g^{′}(-1)=-2\).

The gradient of the graph  \(y=\dfrac{f(x)}{g(x)}\)  at the point where  \(x=-1\)  is

  1. \(-\dfrac{6}{49}\)
  2. \(\dfrac{6}{49}\)
  3. \(\dfrac{6}{25}\)
  4. \(-\dfrac{6}{25}\)
Show Answers Only

\(D\)

Show Worked Solution

\(\text{Using the Quotient Rule when}\ \ x=-1:\)

\(\dfrac{d}{dx}\left(\dfrac{f(x)}{g(x)}\right)\) \(=\dfrac{g(x)f^{′}(x)-f(x)g^{′}(x)}{g(x)^2}\)
  \(=\dfrac{g(-1)f^{′}(-1)-f(-1)g^{′}(-1)}{g(-1)^2}\)
  \(=\dfrac{5 \times -4-7 \times -2}{5^2}\)
  \(=-\dfrac{6}{25}\)

 
\(\Rightarrow D\)

Filed Under: Standard Differentiation (Adv-X) Tagged With: Band 5, eo-unique, smc-1069-10-Quotient Rule, smc-1069-45-Composite functions

Copyright © 2014–2025 SmarterEd.com.au · Log in