SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C1 EO-Bank 3 MC

At which point on the curve  \(y = x^{2}-6x + 8\)  can a normal be drawn such that it is inclined at 45\(^{\circ}\) to the positive \(x\)-axis?

  1. \((1,3)\)
  2. \((2,0)\)
  3. \(\left(\dfrac{5}{2}, -\dfrac{3}{4}\right)\)
  4. \((5,-7)\)
Show Answers Only

\(C\)

Show Worked Solution

\(y = x^{2}-6x + 8\)

\(y^{′} = 2x-6\)

If the normal is inclined at \(45^{\circ}\) to the positive x-axis then:

\(m_{\text{normal}} = \tan 45^{\circ} = 1\)

\(\text{Since } m_{\text{tangent}} \times m_{\text{normal}} = -1,\)

\(\therefore m_{\text{tangent}} = -1.\)
 

Find \(x\) when \(y^{′} = -1:\)

\(2x-6\) \(=-1\)  
\(2x\) \(=5\)  
\(x\) \(=\dfrac{5}{2}\)  

 
Find \(y:\)

\(y\) \(= \left(\dfrac{5}{2}\right)^{2}-6\left(\dfrac{5}{2}\right) + 8\)  
  \(=\dfrac{25}{4}-15 + 8\)  
  \(= -\dfrac{3}{4}\)  

 
\(\Rightarrow C\)

Filed Under: Tangents (Adv-X) Tagged With: Band 5, eo-unique, smc-973-10-Find Tangent Equation

Copyright © 2014–2025 SmarterEd.com.au · Log in