Calculus, 2ADV C1 2023 HSC 14 v1 Find the equation of the tangent to the curve `y=x(3x+2)^2` at the point `(1,25)`. (3 marks) --- 6 WORK AREA LINES (style=lined) --- Show Answers Only `y=55x-30` Show Worked Solution `y` `=x(3x+2)^2` `dy/dx` `=6x(3x+2) + (3x+2)^2` `=(3x+2)(9x+2)` `text{At}\ x=1\ \ =>\ \ dy/dx=(3(1)+2)(9(1)+2)=55` `text{Find equation of line}\ \ m=55,\ text{through}\ (1,25)` `y-y_1` `=m(x-x_1)` `y-25` `=55(x-1)` `y` `=55x-30`