Trigonometry, 2ADV EQ-Bank 13 Prove the identity \(1+\tan ^2 \theta=\sec ^2 \theta\). (2 marks) --- 6 WORK AREA LINES (style=lined) --- Show Answers Only \(\text{LHS}\) \(=1+\tan ^2 \theta\) \(=1+\dfrac{\sin ^2 \theta}{\cos ^2 \theta}\) \(=\dfrac{\cos ^2 \theta+\sin ^2 \theta}{\cos ^2 \theta}\) \(=\dfrac{1}{\cos ^2 \theta}\) \(=\sec ^2 \theta\) Show Worked Solution \(\text{Prove}\ \ 1+\tan ^2 \theta=\sec ^2 \theta\) \(\text{LHS}\) \(=1+\tan ^2 \theta\) \(=1+\dfrac{\sin ^2 \theta}{\cos ^2 \theta}\) \(=\dfrac{\cos ^2 \theta+\sin ^2 \theta}{\cos ^2 \theta}\) \(=\dfrac{1}{\cos ^2 \theta}\) \(=\sec ^2 \theta\)