SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Trigonometry, 2ADV EQ-Bank 13

Prove the identity \(1+\tan ^2 \theta=\sec ^2 \theta\).   (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
\(\text{LHS}\) \(=1+\tan ^2 \theta\)
  \(=1+\dfrac{\sin ^2 \theta}{\cos ^2 \theta}\)
  \(=\dfrac{\cos ^2 \theta+\sin ^2 \theta}{\cos ^2 \theta}\)
  \(=\dfrac{1}{\cos ^2 \theta}\)
  \(=\sec ^2 \theta\)
Show Worked Solution

\(\text{Prove}\ \ 1+\tan ^2 \theta=\sec ^2 \theta\)

\(\text{LHS}\) \(=1+\tan ^2 \theta\)
  \(=1+\dfrac{\sin ^2 \theta}{\cos ^2 \theta}\)
  \(=\dfrac{\cos ^2 \theta+\sin ^2 \theta}{\cos ^2 \theta}\)
  \(=\dfrac{1}{\cos ^2 \theta}\)
  \(=\sec ^2 \theta\)

Filed Under: Trig Identities and Harder Equations Tagged With: Band 3, smc-6412-20-Prove Identity

Copyright © 2014–2026 SmarterEd.com.au · Log in