SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C1 EO-Bank 6

Use the definition of the derivative, `f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}`  to find  `f^{\prime}(x)`  if  `f(x)=x-3x^2`.   (2 marks)

--- 11 WORK AREA LINES (style=lined) ---

Show Answers Only

`f(x)=x-3x^2`

`f^{′}(x)` `= \lim_{h->0} \frac{(x+h)-3(x+h)^2-(x-3x^2)}{h}`  
  `= \lim_{h->0} \frac{x+h-3x^2-6hx-3h^2-x+3x^2}{h}`  
  `= \lim_{h->0} \frac{h-6hx-3h^2}{h}`  
  `= \lim_{h->0} \frac{h(1-6x-3h)}{h}`  
  `= \lim_{h->0} 1-6x-3h`  
  `=1-6x`  

Show Worked Solution

`f(x)=x-3x^2`

`f^{′}(x)` `= \lim_{h->0} \frac{(x+h)-3(x+h)^2-(x-3x^2)}{h}`  
  `= \lim_{h->0} \frac{x+h-3x^2-6hx-3h^2-x+3x^2}{h}`  
  `= \lim_{h->0} \frac{h-6hx-3h^2}{h}`  
  `= \lim_{h->0} \frac{h(1-6x-3h)}{h}`  
  `= \lim_{h->0} 1-6x-3h`  
  `=1-6x`  

Filed Under: Standard Differentiation (Adv-X) Tagged With: Band 4, eo-unique, smc-1069-40-1st Principles

Copyright © 2014–2026 SmarterEd.com.au · Log in