The graph shows the velocity of a particle as a function of its displacement.
Which of the following graphs best shows the acceleration of the particle as a function of its displacement?
Aussie Maths & Science Teachers: Save your time with SmarterEd
The graph shows the velocity of a particle as a function of its displacement.
Which of the following graphs best shows the acceleration of the particle as a function of its displacement?
\(A\)
\(\text{By elimination:}\)
\(v(x)\ \Rightarrow\ \text{degree 3 (see graph)},\ \ \dfrac{dv}{dx}\ \Rightarrow\ \text{degree 2}\)
\(a=v \cdot \dfrac{dv}{dx}\ \Rightarrow\ \text{degree 5 (eliminate C and D)}\)
\(\text{At}\ \ x=0,\ \ v(x)>0\ \ \text{and}\ \ \dfrac{dv}{dx}<0\ \ \Rightarrow\ \ v \cdot \dfrac{dv}{dx} \neq 0\ \text{(eliminate B)}\)
\(\Rightarrow A\)
--- 12 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. \(\text{Show} \ \ \dfrac{1+\cos \theta+i \sin \theta}{1-\cos \theta-i \sin \theta}=i \cot \left(\dfrac{\theta}{2}\right)\)
| \(\text{LHS}\) | \(=\dfrac{1+e^{i \theta}}{1-e^{i \theta}} \times \dfrac{e^{-\tfrac{i \theta}{2}}}{e^{-\tfrac{i \theta}{2}}}\) |
| \(=\dfrac{e^{-\tfrac{i \theta}{2}}+e^{\tfrac{i \theta}{2}}}{e^{-\tfrac{i \theta}{2}}-e^{\tfrac{i \theta}{2}}}\) | |
| \(=\dfrac{2 \cos \left(\frac{\theta}{2}\right)}{-2 i \sin \left(\frac{\theta}{2}\right)}\) | |
| \(=i \cot \left(\frac{\theta}{2}\right)\) |
ii. \(z=\cos \theta+i \sin \theta\)
\(\text{Find sixth roots of}\ -1 \ \text{(by De Moivre):}\)
\(z^6=\cos (6 \theta)+i \sin (6 \theta)=-1\)
| \(\cos (6 \theta)\) | \(=-1 \ \text{and} \ \ \sin (6 \theta)=0\) |
| \(6 \theta\) | \(=\pi, 3 \pi, 5 \pi, \ldots\) |
| \(\theta\) | \(=\dfrac{(2 k+1) \pi}{6}\ \ \text{for}\ \ k=0,1,2, \ldots, 5\) |
\(\therefore \operatorname{Roots }=\cos \left(\dfrac{(2 k+1) \pi}{6}\right)+i \sin \left(\dfrac{(2 k+1) \pi}{6}\right) \ \ \text{for} \ \ k=0,1, \ldots, 5\)
iii. \(\left(\dfrac{z-1}{z+1}\right)^6=-1\)
\(\text {Let} \ \ \alpha=\dfrac{z-1}{z+1} \ \Rightarrow \ \alpha^6=-1\)
\(\text {Using part (ii):}\)
\(\alpha=\operatorname{cis}\left(\dfrac{(2 k+1) \pi}{6}\right) \ \ \text{for}\ \ k=0,1,2,3,4,5\ \ldots\ (1)\)
\(\alpha=\dfrac{z-1}{z+1}\ \ \Rightarrow\ \ \alpha z+\alpha=z-1 \ \ \Rightarrow\ \ z=\dfrac{1+\alpha}{1-\alpha}\)
\(\text{Consider} \ \ \alpha=\operatorname{cis}\left(\dfrac{\pi}{6}\right) \ \text{(i.e. where}\ \ k=0 \ \ \text{from (1) above):}\)
\(z=\dfrac{1+\operatorname{cis}\left(\dfrac{\pi}{6}\right)}{1-\operatorname{cis}\left(\dfrac{\pi}{6}\right)} \ \Rightarrow \ z=i \cot \left(\dfrac{\pi}{12}\right) \quad \text{(using part (i))}\)
\(\text{Similarly}\ (k=1), \ z=\dfrac{1+\operatorname{cis}\left(\dfrac{3 \pi}{6}\right)}{1-\operatorname{cis}\left(\dfrac{3 \pi}{6}\right)} \ \Rightarrow \ z=i \cot \left(\dfrac{3 \pi}{12}\right)\)
\(\therefore z=i \cot \left(\dfrac{\pi}{12}\right), \, i \cot \left(\dfrac{3 \pi}{12}\right), \, i \cot \left(\dfrac{5 \pi}{12}\right), \ldots, i \cot \left(\dfrac{11 \pi}{12}\right)\)
i. \(\text{Show} \ \ \dfrac{1+\cos \theta+i \sin \theta}{1-\cos \theta-i \sin \theta}=i \cot \left(\dfrac{\theta}{2}\right)\)
| \(\text{LHS}\) | \(=\dfrac{1+e^{i \theta}}{1-e^{i \theta}} \times \dfrac{e^{-\tfrac{i \theta}{2}}}{e^{-\tfrac{i \theta}{2}}}\) |
| \(=\dfrac{e^{-\tfrac{i \theta}{2}}+e^{\tfrac{i \theta}{2}}}{e^{-\tfrac{i \theta}{2}}-e^{\tfrac{i \theta}{2}}}\) | |
| \(=\dfrac{2 \cos \left(\frac{\theta}{2}\right)}{-2 i \sin \left(\frac{\theta}{2}\right)}\) | |
| \(=i \cot \left(\frac{\theta}{2}\right)\) |
ii. \(z=\cos \theta+i \sin \theta\)
\(\text{Find sixth roots of}\ -1 \ \text{(by De Moivre):}\)
\(z^6=\cos (6 \theta)+i \sin (6 \theta)=-1\)
| \(\cos (6 \theta)\) | \(=-1 \ \text{and} \ \ \sin (6 \theta)=0\) |
| \(6 \theta\) | \(=\pi, 3 \pi, 5 \pi, \ldots\) |
| \(\theta\) | \(=\dfrac{(2 k+1) \pi}{6}\ \ \text{for}\ \ k=0,1,2, \ldots, 5\) |
\(\therefore \operatorname{Roots }=\cos \left(\dfrac{(2 k+1) \pi}{6}\right)+i \sin \left(\dfrac{(2 k+1) \pi}{6}\right) \ \ \text{for} \ \ k=0,1, \ldots, 5\)
iii. \(\left(\dfrac{z-1}{z+1}\right)^6=-1\)
\(\text {Let} \ \ \alpha=\dfrac{z-1}{z+1} \ \Rightarrow \ \alpha^6=-1\)
\(\text {Using part (ii):}\)
\(\alpha=\operatorname{cis}\left(\dfrac{(2 k+1) \pi}{6}\right) \ \ \text{for}\ \ k=0,1,2,3,4,5\ \ldots\ (1)\)
\(\alpha=\dfrac{z-1}{z+1}\ \ \Rightarrow\ \ \alpha z+\alpha=z-1 \ \ \Rightarrow\ \ z=\dfrac{1+\alpha}{1-\alpha}\)
\(\text{Consider} \ \ \alpha=\operatorname{cis}\left(\dfrac{\pi}{6}\right) \ \text{(i.e. where}\ \ k=0 \ \ \text{from (1) above):}\)
\(z=\dfrac{1+\operatorname{cis}\left(\dfrac{\pi}{6}\right)}{1-\operatorname{cis}\left(\dfrac{\pi}{6}\right)} \ \Rightarrow \ z=i \cot \left(\dfrac{\pi}{12}\right) \quad \text{(using part (i))}\)
\(\text{Similarly}\ (k=1), \ z=\dfrac{1+\operatorname{cis}\left(\dfrac{3 \pi}{6}\right)}{1-\operatorname{cis}\left(\dfrac{3 \pi}{6}\right)} \ \Rightarrow \ z=i \cot \left(\dfrac{3 \pi}{12}\right)\)
\(\therefore z=i \cot \left(\dfrac{\pi}{12}\right), \, i \cot \left(\dfrac{3 \pi}{12}\right), \, i \cot \left(\dfrac{5 \pi}{12}\right), \ldots, i \cot \left(\dfrac{11 \pi}{12}\right)\)
A particle moves in simple harmonic motion about the origin with amplitude \(A\), and it completes two cycles per second. When it is \(\dfrac{1}{4}\) metres from the origin, its speed is half its maximum speed.
Find the maximum positive acceleration of the particle during its motion. (4 marks)
--- 12 WORK AREA LINES (style=lined) ---
\(a_{\text{max}}=\dfrac{8 \pi^2}{\sqrt{3}}\)
\(v^2=-n^2\left(x^2-A^2\right)\)
\(\operatorname{Period}\ (T)=\dfrac{1}{2} \ \Rightarrow \ \dfrac{2 \pi}{n}=\dfrac{1}{2} \ \Rightarrow \ n=4 \pi\)
\(\text{Max velocity occurs at}\ \ x=0:\)
\(v_{\text{max}}^2=-(4 \pi)^2\left(0-A^2\right)=16 \pi^2 A^2\)
\(v_{\text{max}}=\sqrt{16 \pi^2 A^2}=4 \pi A\)
\(\text{At} \ \ x=\dfrac{1}{4}, \ v=\dfrac{1}{2} \times 4 \pi A=2 \pi A\)
| \((2 \pi A)^2\) | \(=-(4 \pi)^2\left(\dfrac{1}{16}-A^2\right)\) |
| \(\dfrac{A^2}{4}\) | \(=A^2-\dfrac{1}{16}\) |
| \(\dfrac{3 A^2}{4}\) | \(=\dfrac{1}{16}\) |
| \(A^2\) | \(=\dfrac{1}{12}\) |
| \(A\) | \(=\dfrac{1}{\sqrt{12}}\) |
\(\text{Max positive acceleration occurs at} \ \ x=-\dfrac{1}{\sqrt{12}}:\)
\(a_{\text{max}}=-n^2 x=-(4 \pi)^2 \times-\dfrac{1}{\sqrt{12}}=\dfrac{8 \pi^2}{\sqrt{3}}\)
Positive real numbers \(a, b, c\) and \(d\) are chosen such that \(\dfrac{1}{a}, \dfrac{1}{b}, \dfrac{1}{c}\) and \(\dfrac{1}{d}\) are consecutive terms in an arithmetic sequence with common difference \(k\), where \(k \in \mathbb{R} , k>0\).
Show that \(b+c<a+d\). (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
\(\text{AP:} \ \dfrac{1}{a}, \dfrac{1}{b}, \dfrac{1}{c}, \dfrac{1}{d} \ \ \text{where common difference}=k\ \ (k>0)\)
\(\text{Show} \ \ b+c<a+d\)
\(\dfrac{1}{a}<\dfrac{1}{a}+k(k>0)\)
\(\dfrac{1}{a}<\dfrac{1}{b}\)
\(\text{Similarly for}\ \ \dfrac{1}{b}<\dfrac{1}{c}\ \ldots\ \text{such that}\)
\(\dfrac{1}{a}<\dfrac{1}{b}<\dfrac{1}{c}<\dfrac{1}{d} \ \ \Rightarrow\ \ a>b>c>d\ \ldots\ (1)\)
\(\dfrac{1}{b}=\dfrac{1}{a}+k \ \ \Rightarrow \ \ k=\dfrac{1}{b}-\dfrac{1}{a}=\dfrac{a-b}{a b}\ \ \Rightarrow \ \ a-b=kab\)
\(\text {Similarly:}\)
\(\dfrac{1}{d}=\dfrac{1}{c}+k \ \ \Rightarrow \ \ k=\dfrac{c-d}{cd}\ \ \Rightarrow\ \ c-d=kcd\)
\(\text{Using \(\ a>b>c>d\ \) (see (1) above):}\)
\(a-b>c-d\)
\(b+c<a+d\)
\(\text{AP:} \ \dfrac{1}{a}, \dfrac{1}{b}, \dfrac{1}{c}, \dfrac{1}{d} \ \ \text{where common difference}=k\ \ (k>0)\)
\(\text{Show} \ \ b+c<a+d\)
\(\dfrac{1}{a}<\dfrac{1}{a}+k\ \ (k>0)\)
\(\dfrac{1}{a}<\dfrac{1}{b}\)
\(\text{Similarly for}\ \ \dfrac{1}{b}<\dfrac{1}{c}\ \ldots\ \text{such that}\)
\(\dfrac{1}{a}<\dfrac{1}{b}<\dfrac{1}{c}<\dfrac{1}{d} \ \ \Rightarrow\ \ a>b>c>d\ \ldots\ (1)\)
\(\dfrac{1}{b}=\dfrac{1}{a}+k \ \ \Rightarrow \ \ k=\dfrac{1}{b}-\dfrac{1}{a}=\dfrac{a-b}{a b}\ \ \Rightarrow \ \ a-b=kab\)
\(\text {Similarly:}\)
\(\dfrac{1}{d}=\dfrac{1}{c}+k \ \ \Rightarrow \ \ k=\dfrac{c-d}{cd}\ \ \Rightarrow\ \ c-d=kcd\)
\(\text{Using \(\ a>b>c>d\ \) (see (1) above):}\)
\(a-b>c-d\)
\(b+c<a+d\)
Let \(w\) be a complex number such that \(1+w+w^2+\cdots+w^6=0\).
--- 4 WORK AREA LINES (style=lined) ---
The complex number \(\alpha=w+w^2+w^4\) is a root of the equation \(x^2+b x+c=0\), where \(b\) and \(c\) are real and \(\alpha\) is not real.
--- 8 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. \(\text{If \(w\) is a \(7^{\text{th}}\) root of \(1 \ \Rightarrow \ w^7=1\)}\)
\(1+w+w^2+\ldots+w^6=0\ \text{(given)}\)
| \((1-w)\left(1+w+w^2+\cdots+w^6\right)\) | \(=0\) |
| \(1-w^7\) | \(=0\) |
| \(w^7=1\) | \(=1\) |
ii. \(w^6+w^5+w^3\)
iii. \(2\)
i. \(\text{If \(w\) is a \(7^{\text{th}}\) root of \(1 \ \Rightarrow \ w^7=1\)}\)
\(1+w+w^2+\ldots+w^6=0\ \ \text{(given,}\ w\neq 1)\)
| \((1-w)\left(1+w+w^2+\cdots+w^6\right)\) | \(=0\) |
| \(1-w^7\) | \(=0\) |
| \(w^7\) | \(=1\) |
ii. \(\text {Find the other root of:} \ \ x^2+b x+c=0\)
\(\text{Since \(b, c\) are real (given),}\)
\(\text{Using conjugate root theory, other root}\ =\bar{\alpha}\)
| \(\bar{\alpha}\) | \(=\overline{w+w^2+w^4}\) |
| \(=\overline{w}+\overline{w^2}+\overline{w^4}\) | |
| \(=\dfrac{1}{w}+\dfrac{1}{w^2}+\dfrac{1}{w^4} \quad\left( \bar{w}=\dfrac{1}{w} \ \text{since} \ \ \abs{w}=1\right)\) | |
| \(=\dfrac{w^7}{w}+\dfrac{w^7}{w^2}+\dfrac{w^7}{w^4}\) | |
| \(=w^6+w^5+w^3\) |
iii. \(\text{Product of roots}=\dfrac{c}{a}=c\)
| \(c\) | \(=\left(w+w^2+w^4\right)\left(w^6+w^5+w^3\right)\) |
| \(=w^7+w^6+w^4+w^8+w^7+w^5+w^{10}+w^9+w^7\) | |
| \(=1+w^6+w^4+\left(w^7 \cdot w\right)+1+w^5+\left(w^7 \cdot w^3\right)+\left(w^7 \cdot w^2\right)+1\) | |
| \(=2+\underbrace{1+w+w^2+w^3+w^4+w^5+w^6}_{=0}\) | |
| \(=2\) |
The acceleration of a particle is given by \(\ddot{x}=32 x\left(x^2+3\right)\), where \(x\) is the displacement of the particle from a fixed-point \(O\) after \(t\) seconds, in metres. Initially the particle is at \(O\) and has a velocity of 12 m s\(^{-1}\) in the negative direction.
--- 10 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
i. \(\text{See Worked Solutions}\)
ii. \(t=\dfrac{\pi}{12 \sqrt{3}} \ \text{sec}\)
i. \(\ddot{x}=32 x\left(x^2+3\right)\)
\(\text{Show} \ \ v=-4\left(x^2+3\right)\)
\(\text{Using} \ \ \ddot{x}=v \cdot \dfrac{dv}{dx}:\)
| \(v \cdot \dfrac{dv}{dx}\) | \(=32 x\left(x^2+3\right)\) |
| \(\displaystyle \int v \, dv\) | \(=\displaystyle \int 32 x^3+96 x\, dx\) |
| \(\dfrac{v^2}{2}\) | \(=8 x^4+48 x^2+c\) |
\(\text{When} \ \ x=0, v=-12 \ \Rightarrow \ c=72\)
\(\dfrac{v^2}{2}=8 x^4+48 x^2+72\)
\(v^2=16\left(x^4+6 x^2+9\right)\)
\(v=-4\left(x^2+3\right) \quad (V=-12 \ \ \text {when} \ \ x=0)\)
ii. \(\dfrac{dx}{dt}=-4\left(x^2+3\right)\)
\(\dfrac{dt}{dx}=-\dfrac{1}{4\left(x^2+3\right)}\)
\(t=-\dfrac{1}{4} \displaystyle \int \dfrac{1}{3+x^2} d x=-\frac{1}{4} \times \frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)+c\)
\(\text{When} \ \ t=0, x=0 \ \Rightarrow \ c=0\)
\(\text{Since particle is moving left at} \ \ t=0,\)
\(\text{Find \(t\) when} \ \ x=-3:\)
| \(t\) | \(=-\dfrac{1}{4 \sqrt{3}} \times \tan ^{-1}\left(-\dfrac{3}{\sqrt{3}}\right)\) |
| \(=-\dfrac{1}{4 \sqrt{3}} \times \tan ^{-1}(-\sqrt{3})\) | |
| \(=-\dfrac{1}{4 \sqrt{3}} \times-\dfrac{\pi}{3}\) | |
| \(=\dfrac{\pi}{12 \sqrt{3}} \ \text{sec}\) |
Let \(\displaystyle I_n=\large{\int}_{\small{\dfrac{\pi}{4}}}^{\small{\dfrac{\pi}{2}}}\)\(\cot ^{2 n} \theta \, d \theta\) for integers \(n \geq 0\).
--- 12 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. \(\text{See Worked Solutions}\)
ii. \(\dfrac{\pi}{4}-\dfrac{2}{3}\)
i. \(\displaystyle I_n=\large{\int}_{\small{\dfrac{\pi}{4}}}^{\small{\dfrac{\pi}{2}}}\)\(\cot ^{2 n} \theta \, d \theta \ \ \Rightarrow \ \ \)\(I_{n-1}=\displaystyle \large{\int}_{\small{\dfrac{\pi}{4}}}^{\small{\dfrac{\pi}{2}}}\)\(\cot ^{2n-2} \theta \, d \theta\)
\(\text{Show} \ \ I_n=\dfrac{1}{2n-1}-I_{n-1} \ \ \text{for} \ \ n>0\)
\(\text{Given} \ \ \dfrac{d}{d \theta} \cot \theta=-\operatorname{cosec}^2 \theta\ \ldots\ (1)\)
| \(I_n\) | \(=\displaystyle \large{\int}_{\small{\dfrac{\pi}{4}}}^{\small{\dfrac{\pi}{2}}}\)\(\cot ^{2 n-2} \theta \cdot \cot ^2 \theta \, d \theta\) |
| \(=\displaystyle \large{\int}_{\small{\dfrac{\pi}{4}}}^{\small{\dfrac{\pi}{2}}}\)\(\cot ^{2 n-2} \theta\left(\operatorname{cosec}^2 \theta-1\right) \, d \theta\) | |
| \(=\displaystyle \large{\int}_{\small{\dfrac{\pi}{4}}}^{\small{\dfrac{\pi}{2}}}\)\(\cot ^{2 n-2} \theta \cdot \operatorname{cosec}^2 \theta \, d \theta-\displaystyle \large{\int}_{\small{\dfrac{\pi}{4}}}^{\small{\dfrac{\pi}{2}}}\)\(\cot ^{2n-2} \theta \, d \theta\) | |
| \(=-\displaystyle \large{\int}_{\small{\dfrac{\pi}{4}}}^{\small{\dfrac{\pi}{2}}}\)\(\cot ^{2 n-2} \theta \cdot \dfrac{d}{d \theta}(\cot \theta) d \theta-I_{n-1}\) | |
| \(=-\left[\dfrac{\cot ^{2 n-1} \theta}{2 n-1}\right]_{\tfrac{\pi}{4}}^{\tfrac{\pi}{2}}-I_{n-1}\) | |
| \(=-\left[\dfrac{\cot ^{2 n-1} (\frac{\pi}{2})}{2 n-1}-\dfrac{\cot ^{2 n-1} (\frac{\pi}{4})}{2 n-1}\right]-I_{n-1}\) | |
| \(=-\left[0-\dfrac{1}{2 n-1}\right]-I_{n-1}\) | |
| \(=\dfrac{1}{2n-1}-I_{n-1}\) |
| ii. | \(I_2\) | \(=\dfrac{1}{3}-I_1\) |
| \(=\dfrac{1}{3}-\left[ \dfrac{1}{2-1}-\displaystyle \int_{\tfrac{\pi}{2}}^{\tfrac{\pi}{2}} 1 \, d\theta \right]\) | ||
| \(=\dfrac{1}{3}-\left[1-\left(\dfrac{\pi}{2}-\dfrac{\pi}{4}\right)\right]\) | ||
| \(=\dfrac{\pi}{4}-\dfrac{2}{3}\) |
The Varroa mite is an external parasite of European honey bees and considered to be the most serious pest of honey bees worldwide.
--- 4 WORK AREA LINES (style=lined) ---
--- 9 WORK AREA LINES (style=lined) ---
a. Varroa mite infection classification
b. Procedure 1: Quarantine
Procedure 2: Surveillance and Destruction
a. Varroa mite infection classification
b. Procedure 1: Quarantine
Procedure 2: Surveillance and Destruction
--- 5 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. \(\text {Using}\ \ (\sqrt{a}-\sqrt{b})^2 \geqslant 0:\)
| \(a-2 \sqrt{a b}+b\) | \(\geqslant 0\) |
| \(a+b\) | \(\geqslant 2 \sqrt{a b}\) |
| \(\dfrac{a+b}{2}\) | \(\geqslant \sqrt{a b}\) |
ii. \(\text{Show}\ \ \dfrac{2 n+1}{2 n+2}<\dfrac{\sqrt{2 n+1}}{\sqrt{2 n+3}}\)
\(\text{Using part (i):}\)
\(\text{Let} \ \ a=2 n+1, b=2 n+3\)
| \(\dfrac{2 n+1+2 n+3}{2}\) | \(\geqslant \sqrt{2 n+1} \sqrt{2 n+3}\) |
| \(2 n+2\) | \(\geqslant \sqrt{2 n+1} \sqrt{2 n+3}\) |
| \(\dfrac{1}{2 n+2}\) | \(\leqslant \dfrac{1}{\sqrt{2 n+1} \sqrt{2 n+3}}\) |
| \(\dfrac{2 n+1}{2 n+2}\) | \(\leqslant \dfrac{\sqrt{2 n+1}}{\sqrt{2 n+3}}\) |
\(\text{Consider part (i):}\ (\sqrt{a}-\sqrt{b})^2 \geqslant 0\)
\(\Rightarrow \ \text{Equality only holds when} \ \ a=b\)
\(\text{Since}\ \ a=2 n+1 \neq b=2 n+3\)
\(\dfrac{2 n+1}{2 n+2}<\dfrac{\sqrt{2 n+1}}{\sqrt{2 n+3}}\)
The graph shows the changes in UV level in a single day. The Cancer Council suggests that sun protection is needed whenever the UV level is 3 or above. The information provided on a sunscreen product suggests that sunscreen should be used between 10 am and 4 pm. Using the graph, evaluate the information provided on the sunscreen product with regard to the Cancer Council suggestion. (3 marks) --- 6 WORK AREA LINES (style=lined) --- Evaluation Judgment: The sunscreen product recommendation is partially effective but requires improvement for optimal sun protection. Supporting Evidence: Conclusion: The product advice inadequately protects users during morning and late afternoon exposure periods when UV damage still occurs. Evaluation Judgment: The sunscreen product recommendation is partially effective but requires improvement for optimal sun protection. Supporting Evidence: Conclusion: The product advice inadequately protects users during morning and late afternoon exposure periods when UV damage still occurs.
Compare the processes of artificial insemination and artificial pollination. (3 marks) --- 6 WORK AREA LINES (style=lined) --- Similarities: Differences: Similarities: Differences:
Outline a process used by fungi for reproduction. (2 marks) --- 4 WORK AREA LINES (style=lined) --- Spore production (asexual reproduction): Alternative acceptable response – Budding: Spore production (asexual reproduction): Alternative acceptable response – Budding:
Outline an adaptation in a pathogen that facilitates transmission between hosts. (2 marks) --- 4 WORK AREA LINES (style=lined) --- Answers could include ONE of the following: Influenza virus: Plasmodium (malaria parasite): Bacterial spores: Answers could include ONE of the following: Influenza virus Plasmodium (malaria parasite): Bacterial spores:
Let \(\underset{\sim}{c}=x \underset{\sim}{i}+y \underset{\sim}{j}+z \underset{\sim}{k}\) be a unit vector that is perpendicular to both \(\underset{\sim}{a}=2 \underset{\sim}{i}+4 \underset{\sim}{j}-3 \underset{\sim}{k}\) and \(\underset{\sim}{b}=-4 \underset{\sim}{i}-5 \underset{\sim}{j}+3 \underset{\sim}{k}\).
Find all possible vectors \(\underset{\sim}{c}\). (4 marks)
--- 10 WORK AREA LINES (style=lined) ---
\(\underset{\sim}{c}= \pm \dfrac{1}{3}(\underset{\sim}{i}-2\underset{\sim}{j}-2 \underset{\sim}{k})\)
\(\underset{\sim}{c} \cdot \underset{\sim}{a}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\left(\begin{array}{c}2 \\ 4 \\ -3\end{array}\right)=2 x+4 y-3 z=0\ \ldots\ (1)\)
\(\underset{\sim}{c} \cdot \underset{\sim}{b}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\left(\begin{array}{c}-4 \\ -5 \\ 3\end{array}\right)=-4 x-5 y+3 z=0\ \ldots\ (2)\)
\(\text{Given} \ \ \abs{\underset{\sim}{c}}=1:\)
\(x^2+y^2+z^2=1\ \ldots\ (3)\)
\(\text{Add}\ \ (1)+(2):\)
\(-2 x-y=0 \ \ \Rightarrow\ \ y=-2 x\)
\(\text{Substitute}\ \ y=-2 x \ \ \text{into (1):}\)
\(-6 x-3 z=0 \ \ \Rightarrow\ \ z=-2 x\)
\(\text{Substituting into (3):}\)
\(x^2+4 x^2+4 x^2=1\ \ \Rightarrow\ \ x^2=\dfrac{1}{9}\ \ \Rightarrow\ \ x= \pm \dfrac{1}{3}\)
| \(\underset{\sim}{c}\) | \(=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=x \underset{\sim}{i}+y \underset{\sim}{j}+z \underset{\sim}{k}\) |
| \(= \pm \dfrac{1}{3}(\underset{\sim}{i}-2\underset{\sim}{j}-2 \underset{\sim}{k})\) |
A particle of mass \(m\) kg moves along a horizontal line with an initial velocity of \(V_0 \ \text{ms}^{-1}\).
The motion of the particle is resisted by a constant force of \(m k\) newtons and a variable force of \(m v^2\) newtons, where \(k\) is a positive constant and \(v \ \text{ms}^{-1}\) is the velocity of the particle at \(t\) seconds.
Show that the distance travelled when the particle is brought to rest is \(\dfrac{1}{2} \ln \left(\dfrac{k+V_0^2}{k}\right)\) metres. (3 marks)
--- 10 WORK AREA LINES (style=lined) ---
| \(ma\) | \(-m k-m v^2\) |
| \(a\) | \(=-k-v^2\) |
| \(v \cdot \dfrac{d v}{d x}\) | \(=-\left(k+\nu^2\right)\) |
| \(\dfrac{d x}{d v}\) | \(=-\dfrac{v}{k+v^2}\) |
| \(x\) | \(=-\displaystyle\frac{1}{2} \int \frac{2 v}{k+v^2}\, d v=-\frac{1}{2} \ln \left(k+v^2\right)+c\) |
\(\text{At} \ \ x=0, v=v_0 \ \ \Rightarrow\ \ c=\dfrac{1}{2} \ln \left(k+V_0^2\right)\)
\(x=\dfrac{1}{2} \ln \left(k+V_0^2\right)-\dfrac{1}{2} \ln \left(k+v^2\right)=\dfrac{1}{2} \ln \left(\dfrac{k+V_0^2}{k+v^2}\right)\)
\(\text{Find \(x\) when \(\ v=0\ \) (distance travelled):}\)
\(x=\dfrac{1}{2} \ln \left(\dfrac{k+V_0^2}{k}\right)\ \text{metres}\)
| \(ma\) | \(-m k-m v^2\) |
| \(a\) | \(=-k-v^2\) |
| \(v \cdot \dfrac{d v}{d x}\) | \(=-\left(k+\nu^2\right)\) |
| \(\dfrac{d x}{d v}\) | \(=-\dfrac{v}{k+v^2}\) |
| \(x\) | \(=-\displaystyle\frac{1}{2} \int \frac{2 v}{k+v^2}\, d v=-\frac{1}{2} \ln \left(k+v^2\right)+c\) |
\(\text{At} \ \ x=0, v=v_0 \ \ \Rightarrow\ \ c=\dfrac{1}{2} \ln \left(k+V_0^2\right)\)
\(x=\dfrac{1}{2} \ln \left(k+V_0^2\right)-\dfrac{1}{2} \ln \left(k+v^2\right)=\dfrac{1}{2} \ln \left(\dfrac{k+V_0^2}{k+v^2}\right)\)
\(\text{Find \(x\) when \(\ v=0\ \) (distance travelled):}\)
\(x=\dfrac{1}{2} \ln \left(\dfrac{k+V_0^2}{k}\right)\ \text{metres}\)
Find \(\displaystyle \int \frac{x^2-2 x+9}{(4-x)\left(x^2+1\right)} \, dx\). (4 marks)
--- 10 WORK AREA LINES (style=lined) ---
\(2\, \tan ^{-1} x-\ln \abs{4-x}+C\)
\(\dfrac{x^2-2 x+9}{(4-x)\left(x^2+1\right)}=\dfrac{A}{(4-x)}+\dfrac{B x+C}{x^2+1}\)
\(A\left(x^2+1\right)+(B x+C)(4-x)=x^2-2 x+9\)
\(\text{If}\ \ x=4:\)
\(17 A=16-8+9=17 \ \ \Rightarrow\ \ A=1\)
\(\text{If}\ \ x=0:\)
\(1+c \times 4=9 \ \ \Rightarrow\ \ C=2\)
\(\text{If}\ \ x=1:\)
\(2+3 B+6=8 \ \ \Rightarrow\ \ B=0\)
| \(\displaystyle\int \frac{x^2-2 x+9}{(4-x)\left(x^2+1\right)}\, d x\) | \(=\displaystyle\int \frac{1}{4-x}\, d x+\int \frac{2}{x^2+1}\, d x\) |
| \(=2\, \tan ^{-1} x-\ln \abs{4-x}+C\) |
Sketch the region of the complex plane defined by \(\abs{z+5-i}>\abs{z-3+3 i}\). (3 marks)
--- 15 WORK AREA LINES (style=lined) ---
\(\abs{z+5-i}=\abs{z-(-5+i)}\)
\(\abs{z-3+3 i}=\abs{z-(3-3 i)}\)
\(\text{Find equation of} \ \perp \ \text{bisector between}\ \ (-5,1) \ \ \text{and}\ \ (3,-3):\)
\(\text{Midpoint} \equiv \left(\dfrac{-5+3}{2}, \dfrac{1-3}{2}\right) \equiv (-1,-1)\)
\(m=\dfrac{-3-1}{3+5}=-\dfrac{1}{2} \ \Rightarrow \ m_{\perp}=2\)
\(\text{Equation of line} \ \ m=2 \ \ \text{through}\ \ (-1,-1):\)
| \(y+1\) | \(=2(x+1)\) |
| \(y\) | \(=2 x+1\) |
\(\text{Sketch:}\ \abs{z+5-i}>\abs{z-3+3 i}\)
Prove by contradiction that \(\sqrt{3}+\sqrt{5}>\sqrt{11}\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\text{Prove} \ \ \sqrt{3}+\sqrt{5}>\sqrt{11}\)
| \(\text{Assume}\ \ \sqrt{3}+\sqrt{5}\) | \(\leqslant\sqrt{11}\) |
| \((\sqrt{3}+\sqrt{5})^2\) | \(\leqslant 11\) |
| \(3+2 \sqrt{15}+5\) | \(\leqslant 11\) |
| \(2 \sqrt{15}\) | \(\leqslant 3\) |
| \(60\) | \(\leqslant 9 \ \text{(incorrect)}\) |
\(\therefore \ \text{By contradiction} \ \ \sqrt{3}+\sqrt{5}>\sqrt{11}\)
\(\text{Prove} \ \ \sqrt{3}+\sqrt{5}>\sqrt{11}\)
| \(\text{Assume}\ \ \sqrt{3}+\sqrt{5}\) | \(\leqslant\sqrt{11}\) |
| \((\sqrt{3}+\sqrt{5})^2\) | \(\leqslant 11\) |
| \(3+2 \sqrt{15}+5\) | \(\leqslant 11\) |
| \(2 \sqrt{15}\) | \(\leqslant 3\) |
| \(60\) | \(\leqslant 9 \ \text{(incorrect)}\) |
\(\therefore \ \text{By contradiction} \ \ \sqrt{3}+\sqrt{5}>\sqrt{11}\)
--- 4 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. \(\abs{2 \underset{\sim}{i}-2 \underset{\sim}{j}+\underset{\sim}{k}}=\sqrt{2^2+(-2)^2+1^2}=3\)
\({\underset{\sim}{F}}_1=\dfrac{12}{3}\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)=\left(\begin{array}{c}8 \\ -8 \\ 4\end{array}\right)\)
\({\underset{\sim}{F}}_1=8\underset{\sim}{i}-8 \underset{\sim}{j}+4 \underset{\sim}{k}\)
ii. \({\underset{\sim}{F}}_3={\underset{\sim}{F}}_1+{\underset{\sim}{F}}_2=\left(\begin{array}{c}8 \\ -8 \\ 4\end{array}\right)+\left(\begin{array}{c}-6 \\ 12 \\ 4\end{array}\right)=\left(\begin{array}{l}2 \\ 4 \\ 8\end{array}\right)\)
\({\underset{\sim}{F}}_3=2 \underset{\sim}{i}+4 \underset{\sim}{j}+8 \underset{\sim}{k}\)
iii. \({\underset{\sim}{F}}_3 \cdot d=\left(\begin{array}{l}2 \\ 4 \\ 8\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=2+4+16=22\)
i. \(\abs{2 \underset{\sim}{i}-2 \underset{\sim}{j}+\underset{\sim}{k}}=\sqrt{2^2+(-2)^2+1^2}=3\)
\({\underset{\sim}{F}}_1=\dfrac{12}{3}\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)=\left(\begin{array}{c}8 \\ -8 \\ 4\end{array}\right)\)
\({\underset{\sim}{F}}_1=8\underset{\sim}{i}-8 \underset{\sim}{j}+4 \underset{\sim}{k}\)
ii. \({\underset{\sim}{F}}_3={\underset{\sim}{F}}_1+{\underset{\sim}{F}}_2=\left(\begin{array}{c}8 \\ -8 \\ 4\end{array}\right)+\left(\begin{array}{c}-6 \\ 12 \\ 4\end{array}\right)=\left(\begin{array}{l}2 \\ 4 \\ 8\end{array}\right)\)
\({\underset{\sim}{F}}_3=2 \underset{\sim}{i}+4 \underset{\sim}{j}+8 \underset{\sim}{k}\)
iii. \({\underset{\sim}{F}}_3 \cdot d=\left(\begin{array}{l}2 \\ 4 \\ 8\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=2+4+16=22\)
Given the function \(y=x e^{2 x}\), use mathematical induction to prove that \(\dfrac{d^n y}{d x^n}=\left(2^n x+n 2^{n-1}\right) e^{2 x}\) for all positive integers \(n\), where \(\dfrac{d^n y}{d x^n}\) is the
\(n\)th derivative of \(y\) and \(\dfrac{d}{d x}\left(\dfrac{d^n y}{d x^n}\right)=\dfrac{d^{n+1} y}{d x^{n+1}}\). (3 marks)
--- 15 WORK AREA LINES (style=lined) ---
\(\text{Proof (See worked solutions)}\)
\(\text{Prove} \ \ \dfrac{d^n y}{d x^n}=\left(2^n x+n 2^{n-1}\right) e^{2 x}\)
\(\text{If } \ \ n=1:\)
\(\operatorname{LHS}=\dfrac{d}{d x}\left(x e^{2 x}\right)=x \cdot 2 e^{2 x}+1 \cdot e^{2 x}=(2 x+1) e^{2 x}\)
\(\operatorname{RHS}=\left(2^{1} \cdot x+1 \cdot 2^{0}\right) e^{2 x}=(2 x+1) e^{2 x}=\operatorname{RHS}\)
\(\therefore \ \text{True for} \ \ n=1\)
\(\text{Assume true for}\ \ n=k:\)
\(\dfrac{d^k y}{d x^k}=\left(2^k x+k\, 2^{k-1}\right) e^{2 x}\)
\(\text{Prove true for}\ \ n=k+1:\)
\(\text{i.e.}\ \dfrac{d^{k+1} y}{d x^{k+1}}=\left(2^{k+1} x+(k+1) 2^k\right) e^{2 x}\)
| \(\dfrac{d^{k+1} y}{d x^{k+1}}\) | \(=\dfrac{d}{d x}\left(2^k x+k\cdot 2^{k-1}\right) e^{2 x}\) |
| \(=\dfrac{d}{d x}\left(2^k x e^{2 x}+k\cdot 2^{k-1} e^{2 x}\right)\) | |
| \(=2^k x \cdot 2 e^{2 x}+2^k \cdot e^{2 x}+k \cdot 2^{k-1} \cdot 2 e^{2 x}\) | |
| \(=2^{k+1} x e^{2 x}+2^k \cdot e^{2 x}+k \cdot 2^k \cdot e^{2 x}\) | |
| \(=2^{k+1} x e^{2 x}+(k+1) 2^k \cdot e^{2 x}\) | |
| \(=\left(2^{k+1} x+(k+1) 2^k\right) e^{2 x}\) |
\(\Rightarrow \ \text{True for} \ \ n=k+1\)
\(\therefore \ \text{Since true for \(\ \ n=1\), by PMI, true for integers} \ \ n \geqslant 1.\)
A bag contains 7 blue lollies and 9 yellow lollies. One lolly is selected at random and eaten. A second lolly is then selected from the remaining lollies in the bag.
Find the probability that the two lollies selected are the same colour. (2 marks)
--- 7 WORK AREA LINES (style=blank) ---
Some phases of cell division in an organism are shown.
What is the correct sequence of the process?
\(A\)
Other Options:
Cochlear implants assist with hearing. The following are five steps involved in the process.
Which is the correct order for this process?
\(C\)
Other Options:
A pathogen that produces an immune response is shown.
Which antibody will be produced as a response to the pathogen?
\(B\)
Other Options:
Dialysis is used to assist people with loss of kidney function.
Which row of the table correctly describes the composition of blood before and after
dialysis?
\begin{align*}
\begin{array}{l}
\rule{0pt}{2.5ex} \ \rule[-1ex]{0pt}{0pt}& \\
\rule{0pt}{2.5ex}\textbf{A.}\rule[-1ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{B.}\rule[-1ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{C.}\rule[-1ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{D.}\rule[-1ex]{0pt}{0pt}\\
\end{array}
\begin{array}{|l|l|}
\hline
\rule{0pt}{2.5ex}{Blood \ before \ dialysis}\rule[-1ex]{0pt}{0pt}& {Blood \ after \ dialysis} \\
\hline
\rule{0pt}{2.5ex}\text{High urea and high glucose}\rule[-1ex]{0pt}{0pt}&\text{Low urea and high glucose }\\
\hline
\rule{0pt}{2.5ex}\text{High urea and high glucose}\rule[-1ex]{0pt}{0pt}& \text{High urea and low glucose }\\
\hline
\rule{0pt}{2.5ex}\text{Low urea and low glucose }\rule[-1ex]{0pt}{0pt}& \text{Low urea and high glucose } \\
\hline
\rule{0pt}{2.5ex}\text{Low urea and high glucose}\rule[-1ex]{0pt}{0pt}& \text{Low urea and low glucose} \\
\hline
\end{array}
\end{align*}
\(A\)
Other Options:
Rabies is a viral disease spread by infected animals. If bitten by an infected animal, a person can be treated by receiving an injection of antibodies.
What type of immunity will this person have following the injection?
\(D\)
Other Options:
An infectious disease is spread through direct contact between hosts.
Under which conditions will this disease spread most rapidly?
\(B\)
Other Options:
Which row in the table correctly identifies the role of phagocytes and lymphocytes?
\begin{align*}
\begin{array}{l}
\rule{0pt}{2.5ex} \ \rule[-1ex]{0pt}{0pt}& \\
\rule{0pt}{2.5ex}\textbf{A.}\rule[-1ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{B.}\rule[-1ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{C.}\rule[-1ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{D.}\rule[-1ex]{0pt}{0pt}\\
\end{array}
\begin{array}{|l|l|}
\hline
\rule{0pt}{2.5ex}{Phagocytes}\rule[-1ex]{0pt}{0pt}& {Lymphocytes} \\
\hline
\rule{0pt}{2.5ex}\text{Engulf bacteria}\rule[-1ex]{0pt}{0pt}&\text{Produce antibodies }\\
\hline
\rule{0pt}{2.5ex}\text{Engulf bacteria }\rule[-1ex]{0pt}{0pt}& \text{Produce antigens}\\
\hline
\rule{0pt}{2.5ex}\text{Produce antibodies}\rule[-1ex]{0pt}{0pt}& \text{Engulf bacteria} \\
\hline
\rule{0pt}{2.5ex}\text{Produce antigens}\rule[-1ex]{0pt}{0pt}& \text{Produce antibodies} \\
\hline
\end{array}
\end{align*}
\(A\)
Other Options:
The table provides information about a $2 coin and a $5 note.
\begin{array} {|c|c|c|}
\hline \text{Coin/note} & \text{Quantity needed to} & \text{Mass of this number} \\ & \text{make \$1000} & \text{of notes/coins} \\& & \text{(kg)} \\
\hline \$2 & 500 & 3.3 \\
\hline \$5 & 200 & 0.157 \\
\hline \end{array}
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
a. \( 6.6\ \text{g}\)
b. \( 393\ \text{g (nearest gram)}\)
a. \(\text{Using 1 kg = 1000 grams:}\)
\(\text{Mass of \$2 coin}=\dfrac{3.3\times 1000}{500}=6.6\ \text{g}\)
b. \( \text{Number of \$2 notes}=\dfrac{1000}{2}=500\)
\(\text{Mass of one \$5 note} = \dfrac{0.157}{200}=0.000785\ \text{kg}\)
\(\text{Since \$2 note weighs the same as \$5 note:}\)
| \(\text{Mass of 500 \$2 notes}\) | \(=500\times 0.000785\) |
| \(=0.3925\ \text{kg}\) | |
| \(=393\ \text{g (nearest gram)}\) |
A used car has a sale price of $24 200. In addition to the sale price, the following costs are charged:
Kat borrows the total amount to be paid for the car, including transfer of registration and stamp duty. Simple interest at the rate of 6.8% per annum is charged on the loan. The loan is to be repaid in equal monthly repayments over 3 years.
Calculate Kat’s monthly repayment. (5 marks)
--- 15 WORK AREA LINES (style=lined) ---
\($835.31\)
\(\text{Stamp Duty} =\dfrac{24\ 200}{100}\times 3=$726\)
| \(\text{Total Cost}\ \) | \(\text{= Price + Transfer + Stamp Duty}\) |
| \(\text{= }24\ 200+50+726\) | |
| \(\text{= }$24\ 976\) |
\(\text{Interest}=Prn=24\,976\times 0.068\times 3=$5095.104\)
| \(\text{Loan amount}\ \) | \(\text{= Total Cost + Interest}\) |
| \(\text{= }24\ 976+5095.104\) | |
| \(\text{= }$30\ 071.104\) |
\(\text{3 years}= 3 \times 12=36\ \text{months}\)
| \(\text{Monthly repayment}\) | \(=\dfrac{30\ 071.104}{36}\) |
| \(=$835.308444\) | |
| \(\approx $835.31\) |
An isosceles triangle is drawn inside a circle as shown. The base of the triangle is 4.8 cm long, the length of other sides is 4 cm and the height is \(h\) cm.
--- 5 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
a. \(h=3.2\ \text{cm}\)
b. \(39.1\%\)
a. \(\text{Since}\ \Delta ABC\ \text{is isosceles:}\)
\(BM\ \text{bisects}\ AC\ \ \Rightarrow\ \ AM=MC=2.4\)
\(\text{Using Pythagoras:}\)
\(h^2=4^2-2.4^2=16-5.76=10.24\)
\(h = \sqrt{10.24} = 3.2\ \text{cm}\)
b. \(\text{Area of circle}=\pi\times 2.5^2\)
| \(\text{Percentage}\) | \(=\dfrac{\text{Area of triangle}}{\text{Area of circle}}\times 100\%\) |
| \(=\dfrac{7.68}{\pi\times 2.5^2}\times 100\%\) | |
| \(=39.11…\%\) | |
| \(\approx 39.1\%\ \text{(1 decimal place)}\) |
A map of a park containing a duck pond is shown.
A fence is built passing through the points \(A\), \(B\) and \(C\) around the duck pond.
--- 5 WORK AREA LINES (style=lined) ---
--- 7 WORK AREA LINES (style=lined) ---
--- 7 WORK AREA LINES (style=lined) ---
a. \(75\ \text{metres}\)
b. \(106\ \text{metres}\)
c. \(225^\circ\)
a. \(\text{Scale: 1 grid width = 5 metres}\)
\(AB = 15 \times 5 = 75\ \text{metres}\)
b. \(\text{Using Pythagoras:}\)
\(AC^2=AB^2+BC^2\)
\(AC^2=75^2+75^2=11250\)
| \(\therefore\ AC\) | \(=\sqrt{11250}\) | |
| \(=106.066…\) | ||
| \(\approx 106\ \text{m (3 sig fig)}\) |
c. \(\text{Since }AB=BC:\)
\(\angle BAC=\angle BCA=45^\circ\)
\(\text{Bearing of \(A\) from \(C\)}\ =180+45=225^\circ\)
At the end of the 2024−2025 financial year, Alex’s taxable income was $148 600.
\begin{array} {|l|l|}
\hline
\rule{0pt}{2.5ex}\textit{ Taxable income}\rule[-1ex]{0pt}{0pt} & \textit{ Tax payable}\\
\hline
\rule{0pt}{2.5ex}\text{\$0 – \$18 200}\rule[-1ex]{0pt}{0pt} & \text{Nil}\\
\hline
\rule{0pt}{2.5ex}\text{\$18 201 – \$45 000}\rule[-1ex]{0pt}{0pt} & \text{16 cents for each \$1 over \$18 200}\\
\hline
\rule{0pt}{2.5ex}\text{\$45 001 – \$135 000}\rule[-1ex]{0pt}{0pt} & \text{\$4288 plus 30 cents for each \$1 over \$45 000}\\
\hline
\rule{0pt}{2.5ex}\text{\$135 001 – \$190 000}\rule[-1ex]{0pt}{0pt} & \text{\$31 288 plus 37 cents for each \$1 over \$135 000}\\
\hline
\rule{0pt}{2.5ex}\text{\$190 001 and over}\rule[-1ex]{0pt}{0pt} & \text{\$51 638 plus 45 cents for each \$1 over \$190 000}\\
\hline
\end{array}
--- 7 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
a. \($36\ 320\)
b. \($2972\)
| a. | \(\text{Tax payable}\) | \(=31\ 288+0.37\times(148\ 600-135\ 000)\) |
| \(=31\ 288+0.37\times 13\ 600\) | ||
| \(=31288+5032\) | ||
| \(=$36\ 320\) |
| b. | \(\text{Medicare}\) | \(=0.02\times 148\ 600\) |
| \(=$2\ 972\) |
Ramon took 1.25 hours to travel the length of a freeway. The length of the freeway is 100 km.
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
a. \(2\ \text{hours}\ 10\ \text{minutes}\)
b. \(80\ \text{km/h}\)
| a. | \(\text{Total time}\) | \(=20+75+35\) |
| \(=130\ \text{minutes}\) | ||
| \(=2\text{ h }10\text{ min}\) |
| b. | \(\text{Average speed}\) | \(=\dfrac{\text{distance}}{\text{time}}\) |
| \(=\dfrac{100}{1.25}\) | ||
| \(=80\ \text{km/h}\) |
Paint is sold in two sizes at a local shop.
Mina needs to purchase 80 litres of paint.
Calculate the amount of money Mina will save by purchasing only ten-litre cans of paint rather than only four-litre cans of paint. (2 marks)
--- 7 WORK AREA LINES (style=lined) ---
\(\text{Saving}=$160\)
\(\text{4 litre cans needed}\ =\dfrac{80}{4}=20\)
\(\text{Cost using 4 litre cans}\ =20\times $90=$1800\)
\(\text{10 litre cans needed}\ =\dfrac{80}{10}=8\)
\(\text{Cost using 10 litre cans}\ =8\times $205=$1640\)
\(\therefore\ \text{Saving}\ =$1800-$1640=$160\)
A researcher is using the statistical investigation process to investigate a possible relationship between average number of minutes per day a person spends watching television, and the average number of minutes per day the person spends exercising.
--- 3 WORK AREA LINES (style=lined) ---
Participants were asked to record the number of minutes they spent watching television each day and the number of minutes they spent exercising each day. The averages for each participant were recorded and graphed, and a line of best fit was included.
--- 1 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
a. \(\text{How does the average daily time spent watching television}\)
\(\text{relate to the average daily time spent exercising?}\)
b. \(\text{Dependent variable: Average minutes per day exercising, or }y.\)
c. \(\text{Form: Linear}\)
\(\text{Direction: Negative}\)
d. \(\text{Gradient}=-1\)
e. \(\text{The extrapolation of the graph past 70 minutes produces}\)
\(\text{negative average minutes per day exercising (impossible).}\)
a. \(\text{How does the average daily time spent watching television}\)
\(\text{relate to the average daily time spent exercising?}\)
b. \(\text{Dependent variable:}\)
\(\text{Average minutes per day exercising, or }y.\)
c. \(\text{Form: Linear}\)
\(\text{Direction: Negative}\)
d.
\(y-\text{intercept = 70}\)
\(\text{Calculating gradient using}\ (0, 70)\ \text{and}\ (60, 10):\)
\(\text{Gradient}=\dfrac{y_2-y_1}{x_2-x_1}=\Big(\dfrac{10-70}{60-0}\Big)=-1\)
e. \(\text{The extrapolation of the graph past 70 minutes produces}\)
\(\text{negative average minutes per day exercising (impossible).}\)
The time, in minutes, it takes to travel by road between six towns is recorded and shown in the network diagram below.
--- 3 WORK AREA LINES (style=lined) ---
New roads are built to connect a town \(G\) to towns \(A\) and \(D\). The table gives the times it takes to travel by the new roads.
\begin{array} {|c|c|c|}
\hline
\rule{0pt}{2.5ex} \textit{Town} \rule[-1ex]{0pt}{0pt} & \textit{Time} \text{(minutes)} \rule[-1ex]{0pt}{0pt} & \textit{Town} \\
\hline
\rule{0pt}{2.5ex} A \rule[-1ex]{0pt}{0pt} & 8 \rule[-1ex]{0pt}{0pt} & G \\
\hline
\rule{0pt}{2.5ex} G \rule[-1ex]{0pt}{0pt} & 22 \rule[-1ex]{0pt}{0pt} & D \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
a. \(\text{Minimum travel time}\ = 15+20+10+5+8=58\ \text{minutes}\)
\(\text{Path: }A → B → C → D → E → F\)
b. \(\text{New roads}\ A → G\ \text{and }G → D \)
c. \(\text{Using the new roads }A → G\ \text{and }G → D:\)
\(\text{Minimum travel time}\ =8+22+5+8=43\ \text{minutes.}\)
\(\text{Therefore the original path is no longer the shortest path.}\)
a. \(\text{Minimum travel time}\ = 15+20+10+5+8=58\ \text{minutes}\)
\(\text{Path: }A → B → C → D → E → F\)
b. \(\text{New roads}\ A → G\ \text{and }G → D \)
c. \(\text{Using the new roads }A → G\ \text{and }G → D:\)
\(\text{Minimum travel time}\ =8+22+5+8=43\ \text{minutes.}\)
\(\text{Therefore the original path is no longer the shortest path.}\)
A trapezium is shown.
--- 4 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
a. \(\text{A}=6(a+30)\ \text{or}\ A=6a+180\)
b. \(a=25\)
| a. | \(A\) | \(=\dfrac{h}{2}\Big(a+b\Big)\) |
| \(=\dfrac{12}{2}\Big(a+30\Big)\) | ||
| \(=6a+180\) |
b. \(\text {When} \ A=330:\)
| \(6a+180\) | \(=330\) |
| \(6a\) | \(=330-180\) |
| \(6a\) | \(=150\) |
| \(a\) | \(=25\) |
Vijay’s heart rate before and after his morning run is shown.
\begin{array} {|l|l|}
\hline
\rule{0pt}{2.5ex} \text{Before run} \rule[-1ex]{0pt}{0pt} & \text{72 beats per minute} \\
\hline
\rule{0pt}{2.5ex} \text{After run} \rule[-1ex]{0pt}{0pt} & \text{126 beats per minute} \\
\hline
\end{array}
What is the percentage increase in Vijay’s heart rate? (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(75\%\)
| \(\text{% increase}\) | \(=\Big[\dfrac{\text{Change in HR}}{\text{Original HR}}\Big]\times 100\%\) |
| \(=\Big[\dfrac{126-72}{72}\Big]\times 100\%\) | |
| \(=75\%\) |
Consider the composite shape shown.
What is the area of the shape in cm² ? (3 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(21\ \text{cm}^2\)
\(\text{Height of triangle}=3+2=5\ \text{cm}\)
| \(\text{Area}\) | \(=\text{Area of triangle}+\text{Area of rectangle}\) |
| \(=\dfrac{1}{2}\times 6\times 5+3\times 2\) | |
| \(=15+6\) | |
| \(=21\ \text{cm}^2\) |
An amount of $90 000 is invested at 4% per annum, compounded quarterly.
Which expression gives the value of this investment, in dollars, after 6 years?
\(D\)
\(PV=90\ 000,\ r=\dfrac{4\%}{4}=1\%=0.01,\ n=4\times 6=24\)
| \(FV\) | \(=PV(1+r)^n\) |
| \(=90\ 000(1+0.01)^{24}\) |
\(\Rightarrow D\)
A used car has a sale price of $24 200. In addition to the sale price, the following costs are charged:
Kat borrows the total amount to be paid for the car, including transfer of registration and stamp duty. Simple interest at the rate of 6.8% per annum is charged on the loan. The loan is to be repaid in equal monthly repayments over 3 years.
Calculate Kat’s monthly repayment. (5 marks)
--- 12 WORK AREA LINES (style=lined) ---
\($835.31\)
\(\text{Stamp Duty} =\dfrac{24\ 200}{100}\times 3=$726\)
| \(\text{Total Cost}\ \) | \(=\ \text{Price + Transfer + Stamp Duty}\) |
| \(=24\ 200+50+726\) | |
| \(=$24\ 976\) |
\(\text{Interest}=Prn=24\,976\times 0.068\times 3=$5095.104\)
| \(\text{Loan amount}\ \) | \(=\ \text{Total Cost + Interest}\) |
| \(=24\ 976+5095.104\) | |
| \(=$30\ 071.104\) |
\(\text{3 years}= 3 \times 12=36\ \text{months}\)
| \(\text{Monthly repayment}\) | \(=\dfrac{30\ 071.104}{36}\) |
| \(=$835.308444\) | |
| \(\approx $835.31\) |
A toy has a curved surface on the top which has been shaded as shown. The toy has a uniform cross-section and a rectangular base.
--- 6 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
a. \(34.68 \ \text{cm}^2\)
b. \(582.64 \ \text{cm}^2\)
c. \(0.490 \%\)
a. \(\begin{array}{|c|c|c|c|}
\hline\rule{0pt}{2.5ex} \quad x \quad \rule[-1ex]{0pt}{0pt}& \quad 0 \quad & \quad 5.1 \quad & \quad 10.2 \quad\\
\hline \rule{0pt}{2.5ex}y \rule[-1ex]{0pt}{0pt}& 6 & 3.8 & 0 \\
\hline
\end{array}\)
| \(A\) | \(\approx \dfrac{h}{2}\left(y_0+2y_1+y_2\right)\) |
| \(\approx \dfrac{5.1}{2}\left(6+2 \times 3.8+0\right)\) | |
| \(\approx 34.68 \ \text{cm}^2\) |
b. \(\text{Toy has 5 sides.}\)
\(\text{Area of base}=10.2 \times 40=408 \ \text{cm}^2\)
\(\text{Area of rectangle}=6.0 \times 40=240 \ \text{cm}^2\)
\(\text{Approximated areas}=2 \times 34.68=69.36 \ \text{cm}^2\)
| \(\therefore \ \text{Area of curved surface}\) | \(=1300-(408+240+69.36)\) |
| \(=582.64 \ \text{cm}^2\) |
c. \(\text{Convert cm to mm:}\)
\(10.2 \ \text{cm}\times 10=102 \ \text{mm}\)
\(\text{Absolute error}=\dfrac{1}{2} \times \text{precision}=0.5 \ \text{mm}\)
\(\% \ \text{error}=\dfrac{0.5}{102} \times 100=0.490 \%\)
--- 5 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
i. \(\displaystyle \binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}\ \ldots\ (1)\)
\(\text{Show:}\ \displaystyle \binom{m}{R}=\binom{m+1}{R+1}-\binom{m}{R+1}\)
\(\text{Substitute} \ \ n=m+1 \ \ \text{and} \ \ r=R+1 \text{ into (1):}\)
\(\displaystyle\binom{m+1}{R+1}=\binom{m}{R}+\binom{m}{R+1}\)
\(\displaystyle\binom{m}{R}=\binom{m+1}{R+1}-\binom{m}{R+1}\)
ii. \(\text{Prove} \ \ \displaystyle \binom{2000}{2000}+\binom{2001}{2000}+\binom{2002}{2000}+\cdots+\binom{2050}{2000}=\binom{2051}{2001}\)
\(\text{Using part (i)}:\)
| \(\operatorname{LHS}\) | \(=1+\displaystyle \left[\binom{2002}{2001}-\binom{2001}{2001}\right]+\left[\binom{2003}{2001}-\binom{2002}{2001}\right]+\ldots\) |
| \(\quad \quad \quad +\displaystyle \left[\binom{2050}{2001}-\binom{2049}{2001}\right]+\left[\binom{2051}{2001}-\binom{2050}{2001}\right]\) | |
| \(=1-1+\displaystyle \binom{2051}{2001}\) | |
| \(=\displaystyle \binom{2051}{2001}\) |
i. \(\displaystyle \binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}\ \ldots\ (1)\)
\(\text{Show:}\ \displaystyle \binom{m}{R}=\binom{m+1}{R+1}-\binom{m}{R+1}\)
\(\text{Substitute} \ \ n=m+1 \ \ \text{and} \ \ r=R+1 \text{ into (1):}\)
\(\displaystyle\binom{m+1}{R+1}=\binom{m}{R}+\binom{m}{R+1}\)
\(\displaystyle\binom{m}{R}=\binom{m+1}{R+1}-\binom{m}{R+1}\)
ii. \(\text{Prove} \ \ \displaystyle \binom{2000}{2000}+\binom{2001}{2000}+\binom{2002}{2000}+\cdots+\binom{2050}{2000}=\binom{2051}{2001}\)
\(\text{Using part (i)}:\)
| \(\operatorname{LHS}\) | \(=1+\displaystyle \left[\binom{2002}{2001}-\binom{2001}{2001}\right]+\left[\binom{2003}{2001}-\binom{2002}{2001}\right]+\ldots\) |
| \(\quad \quad \quad +\displaystyle \left[\binom{2050}{2001}-\binom{2049}{2001}\right]+\left[\binom{2051}{2001}-\binom{2050}{2001}\right]\) | |
| \(=1-1+\displaystyle \binom{2051}{2001}\) | |
| \(=\displaystyle \binom{2051}{2001}\) |
At time \(t\), a particle has position vector \(\underset{\sim}{r}(t)=t \underset{\sim}{i}+\dfrac{t^2}{9} \underset{\sim}{j}\), velocity vector \(\underset{\sim}{v}(t)\) and acceleration vector \(\underset{\sim}{a}(t)\).
Find the time when the angle between \(\underset{\sim}{v}(t)\) and \(\underset{\sim}{a}(t)\) is \(\dfrac{\pi}{4}\). (4 marks)
--- 12 WORK AREA LINES (style=lined) ---
\(t=\dfrac{9}{2}\)
\(\underset{\sim}{r}(t)=t \underset{\sim}{i}+\dfrac{t^2}{9} \underset{\sim}{j}, \ \ \underset{\sim}{v}(t)=\underset{\sim}{i}+\dfrac{2}{9} t \underset{\sim}{j}, \ \ \underset{\sim}{a}(t)=\dfrac{2}{9} \underset{\sim}{j}\)
\(\underset{\sim}{v}=\displaystyle \binom{1}{\frac{2}{9} t}, \quad \underset{\sim}{a}=\displaystyle \binom{0}{\frac{2}{9}}\)
\(\abs{\underset{\sim}{v}}=\sqrt{1^2+\left(\dfrac{2}{9} t\right)^2}=\sqrt{1+\dfrac{4}{81} t^2}\)
\(\abs{\underset{\sim}{a}}=\sqrt{\left(\dfrac{2}{9}\right)^2}=\dfrac{2}{9}\)
\(\text{Angle between vectors}=\dfrac{\pi}{4}:\)
| \(\cos \dfrac{\pi}{4}\) | \(=\dfrac{1 \times 0+\dfrac{2}{9} t \times \dfrac{2}{9}}{\dfrac{2}{9} \times \sqrt{1+\dfrac{4}{81} t^2}}\) |
| \(\dfrac{1}{\sqrt{2}}\) | \(=\dfrac{\dfrac{2}{9} t}{\sqrt{1+\dfrac{4}{81} t^2}}\) |
| \(\sqrt{1+\dfrac{4}{81} t^2}\) | \(=\dfrac{2 \sqrt{2}}{9} t\) |
| \(1+\dfrac{4}{81} t^2\) | \(=\dfrac{8}{81} t^2\) |
| \(81+4 t^2\) | \(=8 t^2\) |
| \(4 t^2\) | \(=81\) |
| \(t^2\) | \(=\dfrac{81}{4}\) |
| \(t\) | \(=\dfrac{9}{2} \quad(t>0)\) |
It is given that \(\dfrac{d y}{d x}=\dfrac{5}{y}\) and \(y=-4\) when \(x=0\).
Find \(y\) as a function of \(x\). (3 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(y=-\sqrt{10 x+16}\)
| \(\dfrac{dy}{dx}\) | \(=\dfrac{5}{y}\) |
| \(\displaystyle \int y\,dy\) | \(=\displaystyle \int 5 \,d x\) |
| \(\dfrac{y^2}{2}\) | \(=5 x+c\) |
\(\text{Given} \ \ y=-4 \ \ \text{when} \ \ x=0:\)
| \(\dfrac{(-4)^2}{2}\) | \(=0+c \ \Rightarrow \ c=8\) |
| \(\dfrac{y^2}{2}\) | \(=5 x+8\) |
| \(y^2\) | \(=10 x+16\) |
| \(y\) | \(=-\sqrt{10 x+16} \quad \text{(Since \((0,-4)\) lies on graph)}\) |
--- 6 WORK AREA LINES (style=blank) ---
--- 7 WORK AREA LINES (style=lined) ---
i. \(\text{See Worked Solutions}\)
ii. \(x=\dfrac{\pi}{3}, \pi\)
i. \(2 \sin (x-\alpha)=\sqrt{3} \sin x-\cos x\)
\(2 \sin x \, \cos \alpha-2 \cos x \, \sin \alpha=\sqrt{3} \sin x-\cos x\)
\(\text{Equating coefficients:}\)
\(2 \cos \alpha=\sqrt{3}, \ \ 2 \sin \alpha=1\)
\(\text{Since} \ \ \cos \alpha>0 \ \ \text{and} \ \ \sin \alpha>0\)
\(\Rightarrow \alpha \ \text{is in 1st quadrant.}\)
\(\tan \alpha=\dfrac{1}{\sqrt{3}} \ \Rightarrow \ \alpha=\dfrac{\pi}{6}\)
\(\therefore \sqrt{3}\, \sin x-\cos x=2\, \sin \left(x-\dfrac{\pi}{6}\right)\)
| ii. | \(\sqrt{3} \sin x\) | \(=\cos x+1\) |
| \(\sqrt{3} \sin x-\cos x\) | \(=1\) | |
| \(2 \sin \left(x-\dfrac{\pi}{6}\right)\) | \(=1\) | |
| \(\sin \left(x-\dfrac{\pi}{6}\right)\) | \(=\dfrac{1}{2}\) | |
| \(x-\dfrac{\pi}{6}\) | \(=\dfrac{\pi}{6}, \dfrac{5 \pi}{6}\) | |
| \(x\) | \(=\dfrac{\pi}{3}, \pi \quad(0 \leqslant x \leqslant 2 \pi)\) |
Find the solution of \(\dfrac{dy}{dx}=\sqrt{(2-y)(2+y)}\), given that \(y=1\) when \(x=0\). (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
\(y=2\, \sin \left(x+\dfrac{\pi}{6}\right)\)
| \(\dfrac{d y}{d x}\) | \(=\sqrt{(2-y)(2+y)}\) | \(=\sqrt{4-y^2}\) |
| \(\dfrac{d x}{d y}\) | \(=\dfrac{1}{\sqrt{4-y^2}}\) | |
| \(\displaystyle \int d x\) | \(=\displaystyle \int \dfrac{1}{\sqrt{4-y^2}} d y\) | |
| \(x\) | \(=\sin ^{-1}\left(\dfrac{y}{2}\right)+c\) |
\(\text{When} \ \ x=0, y=1:\)
\(0=\sin ^{-1}\left(\dfrac{1}{2}\right)+c \ \ \Rightarrow \ \ c=-\dfrac{\pi}{6}\)
| \(x\) | \(=\sin ^{-1}\left(\dfrac{y}{2}\right)-\dfrac{\pi}{6}\) |
| \(\sin ^{-1}\left(\dfrac{y}{2}\right)\) | \(=x+\dfrac{\pi}{6}\) |
| \(\dfrac{y}{2}\) | \(=\sin \left(x+\dfrac{\pi}{6}\right)\) |
| \(y\) | \(=2\, \sin \left(x+\dfrac{\pi}{6}\right)\) |
Prove by mathematical induction that
\(1 \times(1!)+2 \times(2!)+\cdots+n \times(n!)=(n+1)!-1\)
for integers \(n \geq 1\). (3 marks)
--- 12 WORK AREA LINES (style=lined) ---
\(\text{See Worked Solution}\)
\(1 \times 1!+2 \times 2!+\ldots+n \times n!=(n+1)!-1\)
\(\text{Prove true for}\ \ n=1:\)
\(\text{LHS}=1 \times 1!=1\)
\(\text{RHS}=(2)!-1=1=\text{LHS }\)
\(\therefore\ \text{True for}\ \ n=1.\)
\(\text{Assume true for} \ \ n=k:\)
\(1 \times 1!+2 \times 2!+\ldots+k \times k!=(k+1)!-1\)
\(\text{Prove true for} \ \ n=k+1:\)
\(\text{i.e.} \ \ 1 \times 1!+2 \times 2!+\ldots +k \times k!+(k+1) \times(k+1)!=(k+2)!-1\)
| \(\text{LHS}\) | \(=1\times 1!+\ldots+k \times k!+(k+1) \times(k+1)!\) |
| \(=(k+1)!-1+(k+1) \times (k+1)!\) | |
| \(=(k+1)!(1+k+1)-1\) | |
| \(=(k+1)!(k+2)-1\) | |
| \(=(k+2)!-1\) | |
| \(= \operatorname{RHS}\) |
\(\Rightarrow \ \text{True for} \ \ n=k+1\)
\(\therefore \ \text{Since true for \(\ n=1\), by PMI, true for integers \(\ n \geqslant 1\).}\)
Consider the region bounded by the hyperbola \(y=\dfrac{1}{x}\), the \(y\)-axis and the lines \(y=1\) and \(y=a\) for \(a>1\).
Find the volume of the solid of revolution formed when the region is rotated about the \(y\)-axis. (2 marks)
--- 7 WORK AREA LINES (style=lined) ---
\(\pi\left(1-\dfrac{1}{a}\right)\ \text{u}^3\)
The radius, \(r\) cm, and angle, \(\theta\) radians, of a sector vary in such a way that its area remains a constant 10 cm².
The angle \(\theta\) is increasing at a constant rate of 2 radians per second.
Find the rate at which the radius is changing when the radius is 4 cm. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\text{Radius is decreasing at} \ \dfrac{16}{5} \ \text{cm per second.}\)
\(\dfrac{d \theta}{d t}=2\)
\(\dfrac{dv}{d t}=\dfrac{dv}{d \theta} \times \dfrac{d \theta}{d t}\)
| \(A\) | \(=\dfrac{\theta}{2 \pi} \times \pi r^2\) | |
| \(10\) | \(=\dfrac{\theta}{2} \times r^2\) | |
| \(\theta\) | \(=20\, r^{-2}\) |
\(\dfrac{d \theta}{dv}=-40 r^{-3} \)
\(\dfrac{dv}{d \theta}=-\dfrac{r^3}{40}\)
\(\text{ Find \(\dfrac{dv}{dt}\) when \(r=4\):}\)
\(\dfrac{dv}{dt}=-\dfrac{4^3}{40} \times 2=-\dfrac{16}{5}\)
\(\therefore \ \text{Radius is decreasing at} \ \dfrac{16}{5} \ \text{cm per second.}\)
Evaluate \(\displaystyle\int_{\small{\dfrac{\pi}{6}}}^{\small{\dfrac{\pi}{3}}} \cos ^2(3 x) d x\). (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\dfrac{\pi}{12}\)
| \(\displaystyle\int_{\small{\dfrac{\pi}{6}}}^{\small{\dfrac{\pi}{3}}} \cos ^2(3x) dx\) | \(=\displaystyle \dfrac{1}{2} \int_{\small{\dfrac{\pi}{6}}}^{\small{\dfrac{\pi}{3}}} (\cos6x+1) dx \) |
| \(=\dfrac{1}{2}\left[\dfrac{1}{6} \sin 6 x+x\right]_{\small{\dfrac{\pi}{6}}}^{\small{\dfrac{\pi}{3}}}\) | |
| \(=\dfrac{1}{2}\left[\left(\dfrac{1}{6} \sin 2 \pi+\dfrac{\pi}{3}\right)-\left(\dfrac{1}{6} \sin \pi+\dfrac{\pi}{6}\right)\right]\) | |
| \(=\dfrac{1}{2}\left(\dfrac{\pi}{3}-\dfrac{\pi}{6}\right)\) | |
| \(=\dfrac{\pi}{12}\) |
Sketch the graph of \(y=\dfrac{1}{3} \cos ^{-1}(2 x)\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Find \(\displaystyle \int \sin 3x \, \cos x \, dx\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(-\dfrac{1}{8} \cos 4 x-\dfrac{1}{4} \cos 2 x+c\)
| \(\displaystyle\int \sin3x \, \cos x \, dx\) | \(=\displaystyle\frac{1}{2} \int \sin 4 x+\sin2x \,dx\) |
| \(=-\dfrac{1}{8} \cos 4 x-\dfrac{1}{4} \cos 2 x+c\) |
Consider the integral \(\large{\displaystyle{\int}}_{\small{-\dfrac{5}{2}}}^{\small{\dfrac{5}{2}}}\) \(\left(\dfrac{1}{25-x^2}\right) d x\).
The substitution \(x=5 \sin \theta\) is applied.
Which of the following is obtained?
\(\Rightarrow B\)
\(x=5\, \sin \theta\)
\(\dfrac{dx}{d \theta}=5\, \cos \theta \ \Rightarrow \ dx=5\, \cos \theta \, d \theta\)
\(\text{When} \ \ x=\dfrac{5}{2} \ \Rightarrow \ \sin\, \theta=\dfrac{1}{2} \ \Rightarrow \ \theta=\dfrac{\pi}{6}\)
\(\text{When} \ \ x=-\dfrac{5}{2} \ \Rightarrow \ \sin \theta=-\dfrac{1}{2} \ \Rightarrow \ \theta=-\dfrac{\pi}{6}\)
| \(\large{\displaystyle{\int}}_{\small{-\dfrac{5}{2}}}^{\small{\dfrac{5}{2}}}\) \(\left(\dfrac{1}{25-x^2}\right) d x\) | \(=\large{\displaystyle \int}_{\small{-\dfrac{\pi}{6}}}^{\small{\dfrac{\pi}{6}}}\)\(\left(\dfrac{1}{25-25\, \sin ^2 \theta}\right) \cdot 5\ \cos \theta \, d \theta\) |
| \(=\large{\displaystyle \int}_{\small{-\dfrac{\pi}{6}}}^{\small{\dfrac{\pi}{6}}}\)\(\dfrac{5\, \cos \theta}{25\, \cos ^2 \theta} \, d \theta\) | |
| \(=\dfrac{1}{5}\large{\displaystyle \int}_{\small{-\dfrac{\pi}{6}}}^{\small{\dfrac{\pi}{6}}}\)\(\dfrac{1}{\cos \theta} \, d \theta\) | |
| \(=\dfrac{1}{5}\large{\displaystyle \int}_{\small{-\dfrac{\pi}{6}}}^{\small{\dfrac{\pi}{6}}}\)\(\sec \theta \, d \theta\) |
\(\Rightarrow B\)
A slope field is shown.
Which of the following could be the differential equation represented by the slope field?
\(A\)
\(\text{For all \(x<0\), gradients are positive (from graph):}\)
\(\text{Eliminate C and D.}\)
\(\text{At \(x=0\), gradient = 0 (from graph):}\)
\(\text{Eliminate B.}\)
\(\Rightarrow A\)
Given that \(a\) is a non-zero constant, which of the following integrals is equal to zero?
\(D\)
\(\text{Since the limits are symmetrical about 0:}\)
\(\text{Integral will equal zero if function is odd.}\)
\(\text{Consider option D:}\)
\(f(x)=x^2\, \tan^{-1}(x)\)
\(f(-x)=(-x)^2\, \tan^{-1}(-x)=-x^2\, \tan ^{-1}(x)=-f(x)\ \text{(odd)}\)
\(\Rightarrow D\)
A Bernoulli random variable \(X\) has probability distribution
\(P(x)=\dfrac{x+1}{3}\) for \(x=0,1\).
What are the mean and variance of \(X\) ?
\(C\)
\(P(0)=\dfrac{1}{3}, \ P(1)=\dfrac{2}{3} \)
\(E(X) = \dfrac{1}{3} \times 0 + \dfrac{2}{3} \times 1 = \dfrac{2}{3}\)
\(E(X^2) = \dfrac{1}{3} \times 0^2 + \dfrac{2}{3} \times 1^2 = \dfrac{2}{3} \)
\(\text{Var}(X) = E(X^2)-E(X)^2 = \dfrac{2}{3}-\dfrac{4}{9}=\dfrac{2}{9} \)
\(\Rightarrow C\)
A sound wave can be modelled using a function \(P(t)=k\, \sin a t\), where \(P\) is air pressure in Pascals, \(t\) is time in milliseconds (ms) and \(k\) and \(a\) are constants.
--- 6 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
a. \(\text{Amplitude}=2 \Rightarrow k=2\)
\(\text{Period}=5\)
| \(\dfrac{2 \pi}{a}\) | \(=5\) |
| \(5a\) | \(=2 \pi\) |
| \(a\) | \(=\dfrac{2 \pi}{5}\) |
\(\therefore P_1(t)=2\, \sin \left(\dfrac{2 \pi t}{5}\right)\)
\(P_2(t)=4\, \sin \left(\dfrac{\pi}{10} t\right)\)
\(\text{Amplitude}=4\)
\(\text{Period}=\dfrac{2 \pi}{\frac{\pi}{10}}=20\)
c. \(\text {By inspection of graph:}\)
\(P_2(t) \ \text {is decreasing for} \ \ 5<t \leq10\)
\(P_1(t) \text { is decreasing for} \ \ 1.25<t<3.75 \ \ \text{and}\ \ 6.25<t<8.75\)
\(\therefore \ \text{Both decreasing for} \ \ 6.25<t<8.75\)
\(C\)
\(y=-f(x)\ \ \Rightarrow\ \ \text{Reflect \(f(x)\) in the \(x\)-axis.}\)
\(y=-f(-x)\ \ \Rightarrow\ \ \text{Reflect \(-f(x)\) in the \(y\)-axis.}\)
\(\text{In this combination of translations, the order is not important.}\)
\(\Rightarrow C\)