SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Combinatorics, EXT1 EQ-Bank 11

Find the term independent of \(x\) in the expansion of  \(\left(2 x^3+\dfrac{1}{x^4}\right)^7\).   (2 marks)

--- 7 WORK AREA LINES (style=lined) ---

Show Answers Only

\(560\)

Show Worked Solution

\(T_k=\ \text {General term of} \ \ \left(2 x^3+\dfrac{1}{x^4}\right)^7\)

\(T_k\) \(=\displaystyle \binom{7}{k}\left(2 x^3\right)^{7-k} \cdot\left(x^{-4}\right)^k\)
  \(=\displaystyle\binom{7}{k} \cdot 2^{7-k} \cdot x^{3(7-k)} \cdot x^{-4 k}\)
  \(=\displaystyle\binom{7}{k} \cdot 2^{7-k} \cdot x^{21-7 k}\)

 

\(\text{Independent term occurs when:}\)

\(x^{21-7 k}=x^0 \ \Rightarrow \ k=3\)

\(\therefore \text{Independent term}=\displaystyle \binom{7}{3} \cdot 2^4=560\)

Filed Under: The Binomial Theorem (Y11) Tagged With: Band 4, smc-6639-20-Independent Term

Copyright © 2014–2026 SmarterEd.com.au · Log in