SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, 2ADV EQ-Bank 9

It is known that the volume of a hailstone \((V)\) is directly proportional to the cube of its radius \((r)\).

A hailstone with a radius of 1.25 cm has a volume of 8.2 cm\(^3\).

  1. Find the equation relating \(V\) and \(r\).   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. What is the expected radius of a hailstone with a volume of 51.1 cm\(^3\) ? Give your answer to 1 decimal place.   (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(V=4.1984 \times r^{3}\)

b.    \(2.3\ \text{cm (2 d.p.)}\)

Show Worked Solution

a.    \(V \propto r^3 \ \Rightarrow \ V=kr^3\)

\(\text{Find} \ k \ \text{given} \ \ V=8.2 \ \ \text{when}\ \  r=1.25:\)

\(8.2\) \(=k \times 1.25^3\)
\(k\) \(=\dfrac{8.2}{1.25^3}=4.1984\)

 
\(\therefore V=4.1984 \times r^{3}\)

  

b.    \(\text{Find \(r\) when \(\ V=51.1\):}\)

\(51.1\) \(=4.1984 \times r^3\)
\(r\) \(=\sqrt[3]{\dfrac{51.1}{4.1984}}=2.3\ \text{cm (1 d.p.)}\)

Filed Under: Direct and Inverse Variation Tagged With: Band 4, smc-6383-10-\(\propto kx^{n}\), smc-6383-50-Real World Examples

Copyright © 2014–2026 SmarterEd.com.au · Log in