SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Advanced Trigonometry, SMB-040

Identify all \(\theta\) values between  \(0^{\circ} \leq \theta \leq 360^{\circ}\), such that

\(\tan^{2}\theta=\dfrac{1}{3} \)   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\theta=30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}\)

Show Worked Solution
\(\tan^{2}\theta\) \(=\dfrac{1}{3} \)  
\(\tan\,\theta\) \(=\pm \dfrac{1}{\sqrt{3}} \)  

 
\(\text{Reference angle:}\ \ \tan\,\theta=\dfrac{1}{\sqrt{3}}\ \ \Rightarrow \ \ \theta = 30^{\circ}\)

\(\text{Angles exist in all quadrants:}\)

\(\theta\) \(=30^{\circ}, (180-30)^{\circ},(180+30)^{\circ},(360-30)^{\circ}\)  
  \(=30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}\)  

Filed Under: Exact Values, Equations and Trig Graphs Tagged With: Band 4, num-title-ct-pathd, smc-5610-30-tan

Copyright © 2014–2025 SmarterEd.com.au · Log in