SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Area, SM-Bank 101

The triangle below is isosceles.

  1. Use Pythagoras' Theorem to calculate the perpendicular height (\(h\)) of the triangle.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Using your answer from (a), find the area of the triangle.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(12\ \text{m}\)

b.    \(60\ \text{m}^2\)

Show Worked Solution

a.   

\(a^2+b^2\) \(=c^2\)
\(h^2+5^2\) \(=13^2\)
\(h^2\) \(=13^2-5^2\)
\(h^2\) \(=144\)
\(h\) \(=12\)

 
\(\therefore\ \text{The perpendicular height of the triangle is }12\ \text{m}\)
 

b.    \(\text{Area}\) \(=\dfrac{1}{2}\times bh\)
    \(=\dfrac{1}{2}\times 10\times 12\)
    \(=60\ \text{m}^2\)

Filed Under: Triangles Tagged With: num-title-ct-core

Copyright © 2014–2025 SmarterEd.com.au · Log in