SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Area, SM-Bank 101

The triangle below is isosceles.

  1. Use Pythagoras' Theorem to calculate the perpendicular height (\(h\)) of the triangle.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Using your answer from (a), find the area of the triangle.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(12\ \text{m}\)

b.    \(60\ \text{m}^2\)

Show Worked Solution

a.   

\(a^2+b^2\) \(=c^2\)
\(h^2+5^2\) \(=13^2\)
\(h^2\) \(=13^2-5^2\)
\(h^2\) \(=144\)
\(h\) \(=12\)

 
\(\therefore\ \text{The perpendicular height of the triangle is }12\ \text{m}\)
 

b.    \(\text{Area}\) \(=\dfrac{1}{2}\times bh\)
    \(=\dfrac{1}{2}\times 10\times 12\)
    \(=60\ \text{m}^2\)

Filed Under: Triangles Tagged With: num-title-ct-core

Area, SM-Bank 100

Calculate the area of the following triangles.

  1.  
    (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2.   
    (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3.   
        (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(87.42\ \text{m}^2\)

b.    \(1995\ \text{mm}^2\)

c.    \(6650\ \text{m}^2\ \text{or}\ 0.665\ \text{m}^2\)

Show Worked Solution
a.    \(\text{Area}\) \(=\dfrac{1}{2}\times bh\)
    \(=\dfrac{1}{2}\times 12.4\times 14.1\)
    \(=87.42\ \text{m}^2\)

 

b.    \(\text{Area}\) \(=\dfrac{1}{2}\times bh\)
    \(=\dfrac{1}{2}\times 42\times 95\)
    \(=1995\ \text{mm}^2\)

 

c.    \(\text{Area in (cm)}^2\) \(=\dfrac{1}{2}\times bh\)
    \(=\dfrac{1}{2}\times 95\times 140\)
    \(=6650\ \text{cm}^2\)
 

 
\(\text{Area in (m)}^2\)
 
\(=\dfrac{1}{2}\times 0.95\times 1.40\)
    \(=0.665\ \text{m}^2\)

 

Filed Under: Triangles Tagged With: num-title-ct-core

Area, SM-Bank 099

Calculate the area of the following triangles.

  1.  
    (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2.  
    (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3.  
      (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(42\ \text{cm}^2\)

b.    \(17.5\ \text{m}^2\)

c.    \(24\ \text{mm}^2\)

Show Worked Solution
a.    \(\text{Area}\) \(=\dfrac{1}{2}\times bh\)
    \(=\dfrac{1}{2}\times 12\times 7\)
    \(=42\ \text{cm}^2\)

 

b.    \(\text{Area}\) \(=\dfrac{1}{2}\times bh\)
    \(=\dfrac{1}{2}\times 5\times 7\)
    \(=17.5\ \text{m}^2\)

 

c.    \(\text{Area}\) \(=\dfrac{1}{2}\times bh\)
    \(=\dfrac{1}{2}\times 6\times 8\)
    \(=24\ \text{mm}^2\)

Filed Under: Triangles Tagged With: num-title-ct-core

Area, SM-Bank 098

Label the base (\(b\)) and draw and label a line indicating the perpendicular height (\(h\)), on the following triangles.

a.   (1 mark)

                     b.    (1 mark)

                   

c.   (1 mark)

   

--- 0 WORK AREA LINES (style=lined) ---

Show Answers Only

a. 

                     b. 

                   

c. 

   
Show Worked Solution

a. 

                     b. 

                   

c. 

   
         
         

Filed Under: Triangles Tagged With: num-title-ct-core

Area, SM-Bank 097

Identify the base (\(b\)) and the perpendicular height (\(h\)), by labelling the following triangles.

a.   (1 mark)

                     b.    (1 mark)

                   

c.   (1 mark)

   

--- 0 WORK AREA LINES (style=lined) ---

Show Answers Only

a. 

                     b. 

                   

c. 

   
Show Worked Solution

a. 

                     b. 

                   

c. 

   

Filed Under: Triangles Tagged With: num-title-ct-core

Area, SM-Bank 043

Calculate the area of the following shapes in square units.

  1.  
              (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

     

  2.       
            (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(12\ \text{square units}\)

b.    \(10\ \text{square units}\)

Show Worked Solution

a.    \(\text{Area}=4\times 3=12\ \text{square units}\)

b.    \(\text{Area}\) \(=\text{Triangle }1+\text{Triangle }2\)
    \(=\dfrac{1}{2}\times 15+\dfrac{1}{2}\times 5\)
    \(=10\ \text{square units}\)

 

Filed Under: Quadrilaterals, Triangles Tagged With: num-title-ct-core, smc-4943-10-Squares and rectangles

Area, SM-Bank 032 MC

A flag consists of three different coloured sections: red, white and blue.

The flag is 3 m long and 2 m wide, as shown in the diagram below.
 

The blue section is an isosceles triangle that extends to half the length of the flag.

The area of the blue section, in square metres, is

  1.  1.5
  2.  2
  3.  3
  4.  6
Show Answers Only

\(A\)

Show Worked Solution

\(\text{Perpendicular height}\ \Delta=\dfrac{1}{2}\times 3=1.5\ \text{m}\)

\(\text{Area }\Delta\) \(=\dfrac{1}{2}\times bh\)
  \(=\dfrac{1}{2}\times 2\times 1.5\)
  \(= 1.5\ \text{m}^2\)

 
\(\Rightarrow A\)

Filed Under: Triangles Tagged With: num-title-ct-core

Area, SM-Bank 011

This triangle was made by cutting a square in half.
 

 
The perimeter of the triangle is 51.21 cm.

What is the area of the triangle?  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(112.5\ \text{cm}^2\)

Show Worked Solution

\(\text{Triangle is isosceles with perimeter}=51.21\ \text{cm.}\)

\(\Rightarrow\ \text{Length of triangle side}\)

\(=\dfrac{1}{2}\times (51.21 – 21.21)\)

\(=\dfrac{1}{2}\times 30\)

\(=15\ \text{cm}\)

\(\therefore\ \text{Area}\) \(=\dfrac{1}{2}\times bh\)
  \(=\dfrac{1}{2}\times 15\times 15\)
  \(=112.5\ \text{cm}^2\)

Filed Under: Triangles Tagged With: num-title-ct-core

Area, SM-Bank 009

Jill is playing in her parents' rectangular courtyard.

The courtyard is measured at 6 metres by 10 metres.

Jill draws a triangle on the courtyard with chalk, pictured below.

What is the area of this triangle?  (2 marks)
 

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(14\ \text{m}^2\)

Show Worked Solution

\(\text{Base}=7\ \text{m}, \text{ Height}=4\ \text{m}\)

\(\text{Area of}\ \Delta\) \(=\dfrac{1}{2}\times bh\)
  \(=\dfrac{1}{2}\times 7\times 4\)
  \(=14\ \text{m}^2\)

Filed Under: Triangles Tagged With: num-title-ct-core

Area, SM-Bank 007 MC

A triangle is drawn on grid paper.
 

 What is the area of the triangle?

  1. \(6\ \text{square units}\)
  2. \(8\ \text{square units}\)
  3. \(12\ \text{square units}\)
  4. \(16\ \text{square units}\)
Show Answers Only

\(B\)

Show Worked Solution

\(\text{Area}\) \(=\dfrac{1}{2}\times bh\)
  \(=\dfrac{1}{2}\times 4\times 4\)
  \(= 8\ \text{square units}\)

 
\(\Rightarrow B\)

Filed Under: Triangles Tagged With: num-title-ct-core

Area, SM-Bank 006 MC

A triangle is drawn on grid paper.
  

 What is the area of the triangle?

  1. \(15\ \text{square units}\)
  2. \(16\ \text{square units}\)
  3. \(18\ \text{square units}\)
  4. \(20\ \text{square units}\)
Show Answers Only

\(A\)

Show Worked Solution

\(\text{Area}\) \(=\dfrac{1}{2}\times bh\)
  \(=\dfrac{1}{2}\times 6\times 5\)
  \(= 15\ \text{square units}\)

 
\(\Rightarrow A\)

Filed Under: Triangles Tagged With: num-title-ct-core

Area, SM-Bank 001 MC

Which triangle has an area greater than 4 square units?
 

  1. \(\text{Triangle A}\)
  2. \(\text{Triangle B}\)
  3. \(\text{Triangle C}\)
  4. \(\text{Triangle D}\)
Show Answers Only

\(B\)

Show Worked Solution

\(\text{Consider All options:}\)

\(\text{Triangle A}\) \(=\dfrac{1}{2}\times 3\times 2=3\ \text{square units}\)
\(\text{Triangle B}\) \(=\dfrac{1}{2}\times 3\times 3=4.5\ \text{square units}\ \checkmark\)
\(\text{Triangle C}\) \(=\dfrac{1}{2}\times 2\times 4=4\ \text{square units}\)
\(\text{Triangle D}\) \(=\dfrac{1}{2}\times 1\times 6=3\ \text{square units}\)

 
\(\Rightarrow B\)

Filed Under: Triangles Tagged With: num-title-ct-core

Copyright © 2014–2025 SmarterEd.com.au · Log in