SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Congruency, SMB-010

In the diagram, `AD` is parallel to `BC`, `AC` bisects `/_BAD` and `BD` bisects `/_ABC`. The lines `AC` and `BD` intersect at `P`.

  1. Prove that `/_BAC = /_BCA`.  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Prove that `Delta ABP ≡ Delta CBP`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `text(Proof)\ \ text{(See Worked Solutions)}`
Show Worked Solution
i.  

`text(Prove)\ /_BAC = /_BCA`

`/_BCA` `= /_CAD\ \ \ text{(alternate angles,}\ BC\ text(||)\ AD text{)}`
`/_CAD` `= /_BAC\ \ \ text{(}AC\ text(bisects)\ /_BAD text{)}`
`:. /_BAC` `= /_BCA\ …\ text(as required)`

 

ii.  `text(Prove)\ Delta ABP ≡ Delta CBP`

`/_BAC` `= /_BCA\ \ \ text{(from part (i))}`
`/_ABP` `= /_CBP\ text{(}BD\ text(bisects)\ /_ABC text{)}`
`BP\ text(is common)`

 

`:. Delta ABP ≡ Delta CBP\ \ text{(AAS)}`

Filed Under: Congruency Tagged With: num-title-ct-pathc, smc-4747-30-AAS

Copyright © 2014–2025 SmarterEd.com.au · Log in