SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Properties of Geometric Figures, SM-Bank 026

Determine the value of \(a^{\circ}\), \(b^{\circ}\), and \(c^{\circ}\), giving reasons for your answer.   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{All radii are equal (see diagram).}\)

\(a^{\circ} = 70^{\circ}\ \ \text{(angles opposite equal sides in isosceles triangle)} \)

\(b^{\circ} = 2 \times 70 = 140^{\circ}\ \ \text{(external angle = sum of interior opposite angles)} \)

\(140^{\circ} + 2 \times c^{\circ}\) \(=180^{\circ}\ \ \text{(angle sum of isosceles triangle)} \)  
\(2c^{\circ}\) \(=180-40\)  
\(c^{\circ}\) \(=\dfrac{40}{2} = 20^{\circ} \)  
Show Worked Solution

\(\text{All radii are equal (see diagram).}\)

\(a^{\circ} = 70^{\circ}\ \ \text{(angles opposite equal sides in isosceles triangle)} \)

\(b^{\circ} = 2 \times 70 = 140^{\circ}\ \ \text{(external angle = sum of interior opposite angles)} \)

\(140^{\circ} + 2 \times c^{\circ}\) \(=180^{\circ}\ \ \text{(angle sum of isosceles triangle)} \)  
\(2c^{\circ}\) \(=180-40\)  
\(c^{\circ}\) \(=\dfrac{40}{2} = 20^{\circ} \)  

Filed Under: Triangles Tagged With: num-title-ct-core, smc-5008-20-Exterior angles

Copyright © 2014–2025 SmarterEd.com.au · Log in